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Abstract—Power system inertia is declining and is increasingly
variable and uncertain in regions where the penetration of non-
synchronous generation and interconnectors is growing. This
presents a challenge to power system operators who must take
appropriate actions to ensure the stability and security of power
systems relying on short-term forecasts of the system’s inertial
response. Existing models to forecast inertia fail to quantify
uncertainty, which may prevent their utilization given the risk
aversion of the system operators when handling stability issues.
This paper is the first to develop a model to produce calibrated,
data-driven probabilistic forecasts of the inertia contribution
of transmission-connected synchronous generators. The model
provides a necessary tool for system operators to quantify forecast
uncertainty, allowing them to manage the risk of frequency
instability cost-effectively. The paper demonstrates that the
assumption of a Gaussian distribution of uncertainty applied
in existing models is not acceptable to accurately forecast the
inertial response and provides a satisfactory forecast model by
combining non-parametric density forecasting with parametric
tail distributions. Moreover, the paper shows that satisfactory
predictive performance can only be achieved by adopting a rolling
horizon forecast approach to deal with the rapidly changing
characteristics of the inertial response in power systems.

Index Terms—Inertia forecasting, probabilistic forecasting,
energy forecasting, frequency response

I. INTRODUCTION

Driven by the integration of power-electronic-interfaced
generation, load and interconnections, the declining level of
inertial response in power systems and its changing char-
acteristics challenge system operators in maintaining system
stability and efficiently operating the system. On the one
hand, system operators change the dispatch to keep the rate
of change of frequency (ROCOF) within limits by increasing
the inertia or reducing the largest loss in the system. On the
other hand, frequency containment reserves and fast frequency
reserves, such as dynamic containment (Great Britain) or fast
frequency reserve (Nordic area), are scheduled to keep the
frequency nadir within limits following the largest loss of
infeed or offtake. However, the dimensioning of the required
volumes critically depends on system inertia conditions [1],
[2] and should be done ahead of real time. Therefore, the
cost-effectiveness of the actions and the resulting security of
the system relies upon accurate forecasts of system inertia.

However, forecasting the level of inertial response is ex-
tremely challenging as it depends on multiple factors, such as
generation from weather-dependent non-synchronous sources,
load, generator failures, market forces and strategic behaviour
of generators [3]. In fact, inertia forecasting is a much less
explored topic compared to related issues, such as load and
wind power forecasting. The first paper in this field was
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published by Du and Matevosyan in 2018 [4], focusing
on the inertia contribution of transmission-system-connected
synchronous generator units. This forecast model relies upon
a physical model of synchronous generators’ contribution to
inertia using the expected synchronized status of each individ-
ual generator resulting from a centralized unit commitment.
Follow-up research on inertia forecasting has relied upon the
same model, but added a linear regression model that expresses
the contribution of embedded units as a function of the demand
forecast [5]. A major concern of the physical-model-based
forecast is the availability and accuracy of forecast synchro-
nized status of each individual generator [6]. The independent
system operator ERCOT has indicated the risk of inaccurate
forecasts of the individual generators’ real-time status resulting
in overcasts of the inertia, especially during low-price periods
[4]. This effect is even more significant in power systems with
independent market operators that typically do not have control
over the unit commitment. Moreover, the uncertainty on the
synchronized status of individual generators will only increase
with the increasing amount of renewable energy sources. To
this end, time-series forecast models based on historic values
of the inertial response of transmission-connected synchronous
generators are developed, which do not explicitly depend
on the forecast online status of individual generators [7].
However, existing models only provide point forecasts of
expected inertia to the system operator [4], i.e., forecasts of
the expected value of the inertia level, or the forecast models
assume a Gaussian distribution of the residuals with constant
variance [7], which may be violated in practice.

Point forecasts and their related Gaussian assumptions of
uncertainty are unsatisfactory to ensure cost-effectiveness of
current and future system operation. Given the extreme costs
of power interruptions, system operators must rely upon the
extreme quantiles of the predictive distribution. This requires
accurate modelling of the complete distribution of the real-
time inertia, while special attention for accurate modelling of
the tails is critical [8], [9].1 Although an extensive literature
exists on probabilistic forecasting of related variables, such
as wind power, demand and electricity prices [10], insights
into the day-ahead (D-1) predictive distribution of inertia
from transmission-connected synchronous generators are still
missing.

To the best of the authors’ knowledge, this is the first
paper to study the characteristics of the predictive distri-
bution of system inertia. In this context, the paper focuses
on the range of explanatory variables available to forecast
the inertia contribution of transmission-connected synchronous
generators. To get insight into the characteristics of the D-1
predictive distribution of inertia from transmission-connected

1The authors have work in preparation, specifically focusing on the use of
probabilistic inertia forecasts in system operation.
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synchronous generators in power systems, we have applied
statistical estimation techniques to a data set of estimated
inertia data as well as data of multiple exogenous variables
from Great Britain. The paper informs system operators on
how they can improve their existing inertia forecasting practice
by accurately considering the uncertainty related to the D-
1 forecasts with a probabilistic forecast model, as well as
hints for dealing with the long-term evolution of their system
that affects the overall inertia level. This paper provides the
first benchmark model for probabilistic forecast models of
inertia from transmission-connected synchronous generators.
The data set used to build the model is publicly available
for validating the results and for benchmarking improved or
adapted forecast models.

Section II elaborates on the inertia contribution of
transmission-connected synchronous generators. Section III
explains the theory of the probabilistic forecast models, includ-
ing the methodology to evaluate the predictive accuracy and
calibration of the probabilistic models. Section IV elaborates
on the development of the probabilistic model to forecast
the inertia of transmission-connected synchronous generators
for the Great Britain data. It gives insight into the important
features to be considered in the forecast model. Section V
evaluates and validates the model on unseen test data and
elaborates on ways to make the forecast models robust against
the evolutions in power systems. Section VI concludes the
paper.

II. TRANSMISSION-CONNECTED SYNCHRONOUS
GENERATORS INERTIA CONTRIBUTION

Inertial response is defined as the resistance in the form
of energy exchange to counteract the changes in system
frequency resulting from power imbalances in generation and
demand [11]. Therefore, inertia is a crucial asset in power
systems to keep the system stable and avoid disconnection
of loads. The inertial response available in real time should
be sufficient to keep the ROCOF within limits and limit the
largest frequency deviation in combination with adequately
procured frequency response services.

Today, the main source of inertial response is the kinetic
energy of rotating masses that are directly connected to the
system and synchronized with the system frequency. These
rotating masses can instantaneously convert rotating kinetic
energy into electrical energy (or the reverse) to oppose an
imbalance between demand and supply in the system, and as
a result changing their rotational speed and thus system fre-
quency.2 Transmission-connected synchronous generator units
are an important contributor to the inertial response from
synchronized rotating masses available in the system. The
inertia contribution of transmission-connected synchronous
generator units depends upon the individual generators’ online
status according to physical model

EI,Gt =
∑
i

Hi · PG,Ci ·Ki,t [MVAs] (1)

2Convertor-interfaced energy sources, such as modern wind turbines or
storage units, may provide virtual inertia with adequate control strategies,
but this contribution has not been widespread in the system of today yet.

where PG,Ci represents the generation capacity of each indi-
vidual generator i, which is well-known to the system operator.
Hi represents the inertia constant per individual generator.
Ki,t represents the status of generator i at time instant t,
i.e., whether it is synchronized to the system or not. Without
any control action of the system operator, such as generator
startup actions, the status of a generator depends upon the
outcomes of the energy markets, e.g., day-ahead and intraday
markets. The market clearing and resulting generator statuses
are determined by the bids of the different generators to sell
their energy combined with the expected demand for electrical
energy.

While historically generator statuses were quite predictable
given the predictability of the demand pattern and the con-
trollability of synchronous generator units, this is no longer
the case. Today, the market clearing is impacted by forecasts
of uncertain renewable generation units, such as wind and
solar. These forecasts determine the net system demand and
the volume of the bids from renewable generation units,
which will always be in the market due to their low marginal
cost. Demand that cannot be supplied by variable renewable
energy sources needs to be met by synchronous generator
units and/or imported from other countries via interconnectors.
The expected generator statuses may continuously change
from day ahead up to real time due to bilateral trading and
trading on the intraday energy markets for balancing demand
and supply considering changing forecasts of demand and
renewable generation. This probabilistic character of power
systems causes that a single set of day-ahead forecast values
of demand and renewable power generation can result in
different real-time realizations of the inertial response of
transmission-connected synchronous generators available in
the system. To reduce the risk of load shedding and ensure the
cost-effectiveness of system operation, probabilistic forecasts
should accurately capture the uncertainty associated with the
predictions of inertial response at any given point in the future.

III. PROBABILISTIC FORECAST MODEL: THEORY

A probabilistic forecast aims to predict and describe the
uncertainty associated with a given target variable. Forecasts
are made at time t for some time t + k in the future,
defined by the predictive distribution F̂t+k|t(E

I,G
t+k;xxxt). The

predictive distribution quantifies forecast uncertainty in the
form of a probability distribution instead of only focusing
on forecasting the expected value. The target variable in this
paper is the aggregated inertial response from transmission-
connected synchronous generators, as defined in Eq. (1). The
forecast horizon is one day. The system state xxxt at the time a
forecast is produced can be represented by a vector with the
values of exogenous variables available at that time, i.e., one
day ahead of real time, as its elements. Considered exogenous
variables are for instance the D-1 wind forecast, solar forecast,
demand forecast, etc.

Different structures to model the conditional distribution
exist, which may be parametric, semi-parametric or non-
parametric in nature. Probabilistic forecasting of energy vari-
ables is an active field of study [12] spanning wind [13], load
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[14] and electricity prices [15]. This provides a rich liter-
ature of forecasting models that incorporate energy-domain
knowledge which we draw upon here [16]. In this paper,
we worked in the generalized additive modelling framework
to develop a new type of probabilistic forecast model, i.e.,
a model to forecast the inertia contribution of transmission-
connected synchronous generators. We present and compare
a Gaussian parametric probabilistic model, non-parametric
quantile regression models and a hybrid model combining non-
parametric quantile regression with parametric modelling of
the tails of the distribution for day-ahead inertia forecasting.

A. Parametric predictive distribution

By assuming that the predictive distribution of the quantity
being forecast follows a parametric form, the prediction task
is reduced to forecasting the distribution’s parameter values.
In the case of the Gaussian distribution, this is the mean
and standard deviation. We follow this approach here as a
benchmark, and write the predictive distribution as

F̂t+k|t(E
I,G
t+k;xxxt) = Φ(EI,Gt+k; µ̂t+k|t, σ̂) (2)

where Φ(·) is the Gaussian distribution. The conditional mean
µ̂t+k|t is estimated as ÊI,Gt+k|t, which may be considered a
deterministic forecast, and linear models for the conditional
mean are simple to estimate and discussed later in this section.
We assume the standard deviation of the predictive distribution
σ̂2 is constant and estimate it using the sample standard
deviation from training data.

B. Non-parametric predictive distribution

Parametric distributions have a fixed shape and limited
flexibility, which may not be a good representation of reality,
resulting in poor forecast performance. A non-parametric pre-
dictive distribution can be constructed in a piece-wise fashion
by estimating a series of predicted quantiles via quantile
regression [17]. In this case, a separate model is required for
each quantile q̂

(τ)
t+k|t at a range of probability levels τL ≤

τ ≤ τR. A continuous predictive distribution F̂QR(EI,Gt+k;xxxt)
may be formed by interpolating between quantiles, and ex-
trapolating beyond q̂τL and q̂τR . Linear models with the same
structure as for ÊI,Gt+k|t may be estimated to predict conditional
quantiles, though this can be computationally more demanding
than modelling the conditional expectation.

C. Parametric tail distributions

In the tails of the predictive distribution, quantiles with
probabilities close to 0 and 1, estimating quantile regression
models becomes challenging due to the limited availability
of data, by the very nature of the problem. We therefore
consider a parametric distribution for the tails in order to
produce full predictive distributions while retaining the flexi-
bility of quantile regression for non-extreme probability levels.
Extreme value theory provides a theoretical basis for this,
specifically the Generalized Pareto Distribution (GPD), which
describes the distribution of ‘peaks over a threshold’. The GPD
FGPD(·) is characterized by scale and shape parameters ν and

ξ, respectively [18], and may be conditioned on explanatory
variables for increased flexibility if required [8]. The resulting
semi-parametric predictive distribution F̂S(EI,Gt+k) is given by
τLFGPD(q̂τL − E

I,G
t+k; νL, ξL) for EI,Gt+k < q̂τL ,

F̂QR(EI,Gt+k;xxxt) for q̂τL ≤ E
I,G
t+k ≤ q̂τR ,

τR + (1− τR)FGPD(q̂τR + EI,Gt+k; νR, ξR) for EI,Gt+k > q̂τR .
(3)

D. Benchmarking

As this is the first paper to develop a probabilistic iner-
tia forecast model, sophisticated benchmark models do not
exist yet. For this reason, the forecast models have been
benchmarked against two autoregressive-type models. The
autoregressive models have the following model structures

ÊI,Gt+k|t = a1E
I,G
t+k−48 + b1s1(EI,Gt+k−48)+

a2E
I,G
t+k−336 + b2s2(EI,Gt+k−336) (4)

where si(·) are smooth terms able to capture non-linear
responses. The first autoregressive model (AR48) is a linear
regression of the inertial response at the instant of forecasting
(i.e., a2 = 0 and b2 = 0), whereas the second autoregressive
model (AR336) additionally considers the inertial response
in the system one week or 336 settlement periods of 30
minutes before the time instant of interest. The order of the
autoregressive models has been chosen based on inspection of
partial autocorrelation plots. The autoregressive models have
a generalized additive model structure with a linear term and
a smoothing spline term with a thin plate regression spline as
smoothing basis per variable [19]. This elaboration of classical
autoregressive models was chosen after observing a non-linear
autoregressive relationship during data exploration.

On top of this, the proposed forecast models have been
benchmarked against a more complex, non-linear multilayer
perceptron (MLP) machine learning model. The MLP model
has the same features as the best-performing proposed model.
Hyperparameter tuning resulted in a MLP model with three
hidden layers with 20 nodes per layers, sigmoid activation
functions and trained using the ADAM solver.

E. Evaluation

The developed forecast models are evaluated using a range
of established metrics to assess their performance. Point fore-
casts are evaluated using Root Mean Squared Error (RMSE),
Mean Absolute Percentage Error (MAPE) and Mean Overesti-
mation Percentage Error (MOPE). Probabilistic forecasts have
their calibration verified and are evaluated using Continuous
Ranked Probability Score.

The calibration of a probabilistic forecast measures the
statistical consistency between the predictive distributions and
the observations, which is a joint property of the forecasts
and the observations [20]. The calibration is assessed in this
paper using a histogram of the probability integral transform
(PIT). The PIT is defined as ut = F̂t(E

I,G
t ), with EI,Gt the

observations of the inertial energy in the system and F̂t(.)
the derived predictive cumulative distribution function for a
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Fig. 1: Evolution of the inertial response from transmission-
connected synchronous generators in 2016 and 2017 with the
decreasing trend indicated in blue.

given time instant following from the developed probabilistic
forecast model [21]. This results in a random variable U , with
realizations {ut}, that follows a uniform distribution for well
calibrated forecasts with a sufficiently large sample. The his-
togram of the PIT allows to assess the shape of the distribution
of ut and thus the calibration of the probabilistic forecast.
A well-calibrated forecast has a constant PIT histogram. To
deal with the sample uncertainty of the observations at hand,
confidence intervals have been included in the PIT histograms.
The confidence intervals are calculated according to the normal
approximation of the binomial distribution. The impact of se-
rial correlation is considered in the evaluation of the calibration
of the final model on the test data. The confidence intervals
become wider if temporal correlation in the data is considered,
so if the PIT is within the confidence intervals without serial
correlation it automatically is within the confidence intervals
with temporal correlation considered. To consider the temporal
correlation, a surrogate consistency resampling method that
preserves the rank correlation and therefore account for the
impact of serial correlation is used [22].

To evaluate and compare the performance of well-calibrated
probabilistic forecasts, sharpness and resolution are consid-
ered. The CRPS not only accounts for calibration, but also
for the sharpness and the resolution of predictive distributions
[23]. It is defined in Eq. 14 in [21]. The more concentrated
the predictive distributions are, i.e., the sharper, the better,
subject to calibration. Sharp forecasts imply that the system
operator is subject to less uncertainty on the forecast variable.
If different calibrated forecast models have similar sharpness,
models with greater resolution, those with larger variation in
prediction interval width, are preferred as they have a better
ability to discriminate between events.

IV. PROBABILISTIC INERTIA FORECAST MODEL:
DEVELOPMENT AND TUNING

Probabilistic models for day-ahead forecast of the available
inertia from large transmission-connected generators in the
system are developed based on data from the Great Britain
electricity transmission system.

A. Data

To facilitate reproduction of the forecast models developed
here, and benchmarking of future model improvements, this

TABLE I: Exogenous features available in the public data set

Feature type Feature name

Demand transmission system demand (TSD), na-
tional demand (ND)

Real-time gener-
ation capacity

coal, nuclear, combined-cycle gas tur-
bine (CCGT), wind, pumped hydro,
hydro, biomass, solar, open-cycle gas
turbine (OCGT), total capacity

Interconnector
flows

France (IFA1), Netherlands (BritNed),
Island of Ireland (East-West and
Moyle), total interconnection flow

Day-ahead fore-
casts

solar, onshore wind, offshore wind, na-
tional demand, transmission system de-
mand

Electricity price hourly electricity price from the day-
ahead auction

Inertial response inertial response from coal, nuclear,
CCGT, pumped hydro, non-pumped hy-
dro, biomass, OCGT, and total inertial
response = Target variable

paper comes with a public data set. The data set contains data
from Great Britain for the years 2016, 2017 and 2018, which
are collected from Elexon’s BM reports3, ENTSO-E’s data
transparency platform4, National Grid’s data explorer5 and
the Nordpool website6. The combined data set contains the
features summarized in Table I. The data sets from different
sources have been made consistent in terms of time zones.
Some periods suffering data quality issues have been excluded.
Moreover, time instants suffering from unexpected zero fore-
casts of wind power generation or unexpectedly low online
capacity of the transmission-connected synchronous generators
are removed from the data set.

Based on the data collected from the different sources,
the inertia contribution from large transmission-connected
synchronous generators has been estimated based on Eq.
(1). The online capacity per individual generator has been
estimated based on the generation output of each individual
transmission-connected synchronous generator unit per time
instant in Elexon’s BM reports, which determines whether the
unit was synchronized with the system, and the capacity per
transmission-connected generator unit published in Elexon’s
BM reports. In practice, the inertia constants of specific gen-
erators are known to the system operator, which can be directly
used in the forecasting model. However, due to the commercial
sensitivity, such data can not be made publicly available.
Therefore, we select representative inertia constants based on
data available in the literature [24] and sample inertia constants
for individual generators from normal distributions that differ
per generator type.7 Table II summarizes the parameters of the
normal distributions of the inertia constants per generator type
used to calculate the inertial response in the system at each
time instant.

3https://www.bmreports.com/bmrs/?q=help/about-us[Accessed10/07/2020]
4https://transparency.entsoe.eu/ [Accessed 10/07/2020]
5https://data.nationalgrideso.com/ [Accessed 10/07/2020]
6https://www.nordpoolgroup.com/ [Accessed 10/07/2020]
7The mean of the Gaussian distributions of the inertia constants is based

on [11] and [24].
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Fig. 2: Learning curve for different degrees of model complexity assuming a Gaussian predictive distribution considering
10-fold cross-validation and the continuous rank probability score as a performance metric evaluated for the training data. The
table specifies the variables included in the model structures assessed in the learning curve (y: included, n: not included)

TABLE II: Parameters of the normal distribution of the inertia
constants per generator type

σ [s] µg [s]

Coal 0.6 5
Nuclear 0.85 6
Combined-cycle gas turbine 0.5 4
Biomass 0.5 4
Non-pumped storage hydro 0.9 6
Fossil gas 0.8 4
Fossil hard coal 0.65 4
Fossil oil 0.7 4
Hydro-run-of-river and poundage 1.0 6
Open-cycle gas turbine 0.6 4
Other 0.4 4

The category ’Other’ refers to non-specified generators connected to the
transmission system, but not further classified by National Grid. It does not
cover demand-response capabilities or grid-forming invertor capabilities at

the moment.

To test the performance of the model on out-of-sample
data, the data set has been divided in a training set and
test set. The data of the years 2016 and 2017 have been
considered as training data, whereas the data of 2018 have
been considered as test data. Fig. 1 shows the evolution of
the inertial response from transmission-connected synchronous
generators for the years 2016 and 2017. The profile shows a
yearly and daily periodicity as well as a decreasing trend in
the inertial energy. The data of 2016 and 2017 have been used
to develop the models, whereas the test set is only used during
final performance evaluation.

B. Modelling of the conditional mean of a parametric Gaus-
sian predictive distribution

10-fold cross-validation on the training data has been used
to select a suitable structure to model the conditional mean of
the parametric Gaussian predictive distribution as a function of
exogenous variables, temporal variables and lagged versions
of the target variable. A linear correlation analysis has shown
strong correlation between the inertial response available the

next day and the forecast of demand. The model comparison
starts from a simple linear model structure with the day-
ahead forecast of national demand as a single variable. The
national demand is the net load in the system, i.e., the load
minus the solar and wind power generation. Additionally, the
impact of adding other system variables available in day ahead
to the model structure on the predictive accuracy has been
assessed. These variables are day-ahead forecasts of wind
power generation (onshore and offshore), solar power gen-
eration, the inertial energy at the moment of forecasting and
temporal variables. Fig. 2 shows the learning curve in terms
of the continuous ranked probability score for 10-fold cross-
validation considering different linear structures to model the
mean of Gaussian predictive distributions. The variance of the
Gaussian is assumed to be constant for this analysis. The best
performing model in Fig. 2, model no. 1, considers the forecast
of wind generation, solar generation, the inertia at the moment
of forecasting, as well as the negative trend in the inertia with
time (linear and quadratic). The resulting model is given by8

ÊI,Gt+k|t = α1E
I,G
t + α2P̂

ND
t + α3P̂

wind
t + α4P̂

solar
t +

α5t+ α6t
2 (5)

The inertial response the next day is expected to be higher if
the day-ahead demand forecast and the inertial energy at the
time of forecasting are higher (positive coefficients), whereas
high forecast values for wind and solar power generation in
day-ahead are expected to result in a lower level of inertia
the next day (negative coefficients). This is caused by the fact
that solar and wind power plants do not provided inertia to
the system at present.

The residuals of model no. 1 have been assessed as a
function of different covariates. Two covariates that show
clear relationships with the residuals are the interconnection
flows and whether we are forecasting for a weekday or a
holiday / weekend day, as shown in Fig. 3. Especially when

8The values of the coefficients are summarized in Table IV in Appendix.
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forecasting for holidays/weekend days, there is a higher risk
for overestimating the inertia that will be available. The
decreasing trend of the residuals with the interconnection
flows indicates that if more power is imported into the system
(positive interconnection flow), the risk of overestimating the
available inertial response is higher (negative residual). This is
caused by the convertor-interfaced interconnectors preventing
imported power to provide inertia to the system. We have also
assessed the impact of explicitly considering seasonality in
the model structure, i.e., changing the model coefficients per
season. However, this change had only limited impact on the
predictive performance and has not been considered further.

To improve the accuracy of the model, we have modified
the model structure in model no. 1 (according to Fig. 2 and
Eq. (5)) in two ways. First of all, after observing distinct
behaviours relating to day-types, we fit separate models for
week-days and non-weekdays (including public holidays).
Second, introducing the net real-time interconnection flow
aggregated for all convertor-interfaced interconnectors as a
variable in the model structure has a positive impact. The
structure of the model with the impact of the total net
interconnection flow P ict is given by9

ÊI,Gt+k|t = β1,dE
I,G
t + β2,dP̂

ND
t + β3,dP̂

wind
t +

β4,dP̂
solar
t + β5,dP

ic
t + β6,d · t+ β7,d · t2 (6)

and is estimated separately for weekdays and non-weekdays
(type of day indicated by subscript d). First of all, the impact
of the inertial response level is an order of magnitude smaller
when forecasting for a weekend day / holiday compared
to a weekday, as the previous (week)day is typically not
representative for the weekend day / holiday. Second, positive
interconnection flows, corresponding to import to the system,
result in a lower inertia level to be expected the next day. As
this import is provided by HVDC interconnectors, inertia is no
byproduct of the imported energy having a negative impact on
the level of inertia in the system.

The resulting performance metrics on the train data are
shown in Table III. The improvement in forecast accuracy if
the interconnection flow is added as a variable to the model
structure indicates the importance of including an accurate
forecast of the interconnector flows in the forecast model.10

Fig. 4 shows that the trends in the residuals have disappeared
with the modifications to the model.

In general, the developed models outperform the benchmark
autoregressive models in terms of the different performance
metrics for the training set, as shown in Table III. All perfor-
mance metrics have more than halved, both the metrics that are
related to the point forecast models as well as the continuous
ranked probability score. Moreover, the performance metrics
of the proposed forecast models have similar order of magni-
tudes as and are even slightly better than more complex, non-
linear MLP machine learning models with the same features.
On top of their improved performance, a clear advantage of

9The values of the coefficients are summarized in Table IV in Appendix.
10As day-ahead forecasts of the interconnection flows are currently not pub-

licly available, we have used the real-time realization in model development.
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Fig. 3: Residuals of model no. 1 in Fig. 2 as a function
of the interconnection flow and type of day (weekday or
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an overcast of the inertial response.
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Fig. 4: Residuals of the model specified in Eq. (6) as a function
of interconnection flow and type of day (weekday or weekend
day/holiday).

the proposed models is their interpretability and explanatory
character.

C. Calibration of probabilistic forecast models on train data

The calibration of the best-performing parametric Gaussian
predictive distribution according to the CRPS in Table III is not
acceptable. Fig. 5a shows the histogram of the PIT with 95%
confidence intervals and 100 breaks for the model presented
in Eq. (6). The PIT histogram in Fig. 5a shows deviations
compared to the reference line of the uniform distribution of
the PIT, especially in the tails. The histogram also suggests
that some skewness in the distribution is not captured by the
Gaussian predictive distribution.
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TABLE III: Performance metrics on the train data of the
benchmark and the developed forecast models

Model name RMSE MAPE MOPE CRPS
[MVAs] [%] [%] [MVAs]

AR48 17885 9.6 10.7 9927
AR48 AR336 15222 8.3 9.3 8523
Model no. 1 (Eq. (5)) 9387.5 5.1 5.3 5258
Model no. 1 + IC
flow 8125 4.4 4.5 4536

Model no. 1 + type
of day 8860 4.8 4.9 4949

Model no. 1 + IC
flow and type of day
(Eq. (6))

7733 4.2 4.2 4314

MLP 10368 5.8 5.6 5847

Quantile regression is a non-parametric modelling technique
that facilitates to account for the skewness in the distribution
[25]. Equidistant quantiles between the 5% and 95% have
been modelled (5% distance) as well as the 1% - 5% and
95% - 99% quantiles with 1% distance. Interpolation using
a monotone Hermite spline has been applied between the
quantiles and linear interpolation with lower bound zero and
upper bound one has been applied below and above the 1%
and 99% quantile resp. The model structure of the quantiles
is the same as in Eq. (6), with different model coefficients per
quantile. The quantile regression model is calibrated better in
the main of the distribution, but still deviates in the extreme
quantiles, as shown in Fig. 5b. Moreover, less than 5 out of
the 100 bins are out of the 95% confidence interval on the
PIT histogram, which indicates that the predictive distribution
is well-calibrated on the training data.

The calibration for the tails can be improved by modelling
the tails with a parametric extreme value distribution, re-
sulting in a semi-parametric model. Fig. 5c shows the PIT
histogram of a quantile regression model with Generalized
Pareto distribution for the 3% upper and lower quantiles
applied to the training data. The day-ahead forecast of national
demand is used as exogenous variable to model scale and
shape parameters of the Generalized Pareto distribution with
a thin plate regression spline as smoothing basis [19]. The
PIT histogram indicates improvements in terms of calibration
compared to the PIT histograms of the other models.

V. VALIDATION AND TESTING OF PROBABILISTIC INERTIA
FORECAST MODEL ON TEST DATA

Although the semi-parametric model is well-calibrated on
the training data, it results in unacceptable calibration on the
test data. The PIT histogram in Fig. 6 indicates that too many
observations in 2018 correspond to the lower quantiles of the
predictive distribution. This malfunctioning is caused by slow
changes to the GB power system, resulting in bias forecasts.
First of all, the coal power plants are phased out over the
period from 2016 with significantly reduced output in 2017
and very low output in 2018. Second, the volume of import
via interconnectors increases significantly in 2018 compared to
2017 and 2016, especially from October. This evolution causes
power plants that provide inertia to be replaced by converter-
interfaced import of power. This changes the characteristics of
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Fig. 5: Histogram of the PIT of the best performing model in
Table III applied to the training data.

the inertia from transmission-system-connected synchronous
generators in the system over time and in relation to available
explanatory variables, such as forecasts of electricity demand.

To deal with the changing characteristics of inertia over
time, a periodic re-training approach has been applied to
the quantile regression and GPD models. The rolling horizon
approach fits the forecast models on sliding training windows
[20], [26], [27]. The models are updated on a monthly basis
and the data of the last month are added to the training
set. Data points in the training set are weighted equally
the last year plus one month before the forecasting instant,
while weights are linearly decreasing for earlier settlement
periods. These choices have been made based on the trade
off between computational cost and forecast performance. Fig.
7 shows the PIT histogram of the rolling horizon quantile
regression model with Generalized Pareto distribution of the
tails. The rolling horizon approach improves the calibration
of the probabilistic forecast model on the test set compared to
the best static probabilistic forecast model, for which the PIT
histogram is shown in Fig. 6. This periodic model re-training
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Fig. 6: Histogram of the PIT of the static quantile regression
model with Generalized Pareto tails (Semi-parametric) applied
to the test data.
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Fig. 7: Histogram of the PIT of the quantile regression forecast
model with Generalized Pareto tails (Semi-parametric) and
periodic model re-training applied to the test data

produces calibrated forecasts and demonstrates the importance
of tracking changes in the underlying power system when
producing inertia forecasts.

The analysis demonstrates the importance of the developed
probabilistic forecast models for system operation. Today,
system operation is based on deterministic point forecasts
with limited or even naive forecast uncertainty estimation
(e.g., Gaussian assumption with constant variance), which
are inadequate, especially at low probability levels relevant
for risk-based decision making. The PIT histogram of the
Gaussian predictive distribution in Fig. 5a shows that using
prediction intervals based on the lower quantiles (below 5%),
i.e., quantiles representing the most relevant, low-inertia condi-
tions for a risk-averse system operator, are not well-calibrated
with the real predictive distribution of inertia. This situation
has been improved largely by adopting the semi-parametric
model structure, as shown by the PIT histogram in 5c.

Furthermore, the changing nature of power systems ne-
cessitates adaptive forecasting methods. A simple solution to
this, which borrows from the field of demand and electricity
price forecasting as applied in industry, is demonstrated above.
While the results show good performance in general, the
out-of-sample test suggests that the left tail is not correctly
calibrated. This motivates development of more sophisticated
adaptive schemes, such as the one in [28], with a specific
focus on the extremes/tail distributions, which is the subject
of ongoing work.

VI. CONCLUSION

The developed probabilistic model is the first explana-
tory data-driven model to forecast the inertia contribution of
transmission-connected synchronous generators in day-ahead,
which is furthermore able to accurately quantify uncertainty of
inertia forecasts. Accurate uncertainty quantification is crucial
to adequately handle the risk of ROCOF and under-frequency
relay tripping, and we find the simple approach of assuming
a Gaussian predictive distribution to be inadequate. There-
fore, semi-parametric density forecasts are produced modeling
individual quantiles of the predictive distribution using day-
ahead forecasts of national demand, wind and solar power
generation, as well as a decreasing trend in the inertia, inertia
at the moment of forecasting and interconnector flows, while
accounting for the difference between weekdays and weekend
days/holidays. To properly model the tails of the predictive
distribution, which are crucial to characterize potential low-
probability high-impact conditions, the Generalized Pareto
distribution has been used. To maintain the calibration of
the probabilistic forecasts in power systems with evolving
characteristics it is crucial to periodically update forecasting
models. Future work will focus on investigating how this
forecast model can improve the operational practice for fre-
quency control, which is currently based on point forecasts
or approximate interval forecasts. Moreover, other adaptive
approaches to track changes in system characteristics should
be investigated.
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APPENDIX

TABLE IV: Coefficients of the forecast models in Eq. (5) and
Eq. (6)

Eq. (5) Eq. (6) free days Eq. (6) non-free days

EI,G
t 0.154 6.44E-02 0.149

P̂ND
t 3.495 3.513 3.204
P̂wind
t -2.915 -3.001 -3.128
P̂ solar
t -0.767 -0.738 -0.305
t 6.58E-05 1.73E-04 1.73E-04
t2 -2.15E-04 -6.91E-04 -6.91E-04
P ic NA -3.325 -4.29


