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Abstract—Two nonlinear methods for producing short-term
spatio-temporal wind speed forecast are presented. From the
relatively new class of kernel methods, a kernel least mean
squares algorithm and kernel recursive least squares algorithm
are introduced and used to produce 1 to 6 hour-ahead predictions
of wind speed at six locations in the Netherlands. The perfor-
mance of the proposed methods are compared to their linear
equivalents, as well as the autoregressive, vector autoregressive
and persistence time series models. The kernel recursive least
squares algorithm is shown to offer significant improvement over
all benchmarks, particularly for longer forecast horizons. Both
proposed algorithms exhibit desirable numerical properties and
are ripe for further development.

I. INTRODUCTION

Wind energy penetration is increasing on power systems
around the world driven primarily by a desire to reduce
reliance on carbon intensive alternatives. To optimally utilise
variable renewable generation, such as wind power, power
systems, and the way they are operated, are changing: trans-
mission networks must connect distant renewable generation
to load centres, distribution networks must accommodate small
scale generation, and operators must consider the stochas-
tic nature of this new variable generation when performing
scheduling tasks [1]–[4]. Decisions relating to scheduling tasks
are informed by forecasts on a variety of temporal and spatial
scales, and the upper limit on the level of variable generation
that can be accommodated by power systems will ultimately
be set by the skill of these forecasts (and their users).

This paper is concerned with short-term wind speed fore-
casting, a key input when predicting wind power. Unlike
day-ahead forecasting, where numerical weather predictions
are essential, short-term forecasts (up to approximately 6
hours) produced by purely statistical methods are superior
to complex physical models [5]. Spatio-temporal approaches,
which model and forecast multiple locations simultaneously to
capture space-time dependencies, have been shown to improve
skill significantly when compared to forecasts which only
consider individual locations.

To date, the majority of statistical methods used for wind
speed prediction have been linear despite the well established
nonlinear nature of the wind. We therefore explore a relatively
new and exciting class of learning algorithms called kernel
methods which enable the linear processing of nonlinear
‘features’. This approach retains many desirable properties
of linear processing, such as fast learning algorithms and

the existence of a unique optimal solution, while making it
possible to capture some nonlinearities.

Over the last decade, many kernel methods have been
developed and now represent a distinct class of learning
algorithms. Such methods are based on the so called ‘kernel
trick’, a result which allows the inner product of a nonlinear
function defined by a Mercer kernel (Mercer’s Theorem [6])
to be calculated while the function itself remains unknown [7].
This has advantageous properties in function estimation and
classification; support vector machines, for example, rely on
kernel methods.

A direct application of nonlinear function estimation is
regression, where some nonlinear mapping is followed by
linear processing in a high (or infinite) dimensional feature
space. The kernel trick removes the need to identify the
mapping associated with the a given Mercer kernel which may
not be available or be difficult to calculate; the only challenge
is selecting an appropriate kernel for the problem at hand.

Several linear methods have been ‘kernelised’ including the
popular least means squares (LMS) [8] and recursive least
squares (RLS) [9] algorithms, plus extensions, [10]–[13] for
example. Reported applications to forecasting include high
frequency wind prediction [13], [14] and load forecasting [15],
among others.

In this paper we examine the application of two kernel
methods to the short-term wind forecasting problem: a simple
kernelised LMS algorithm and the kernel RLS of [9] are
studied. The theory of Kernel methods is briefly introduced in
Section II and the prediction problem is stated in III followed
by descriptions of the KLMS and KRLS algorithms in III-B
and III-C, respectively. A case study is then presented in
Section IV, including how the algorithms and benchmarks
were implemented, and their performance is evaluated. Finally,
conclusions are drawn in Section V.

II. KERNEL METHODS

Kernel methods are a class of learning algorithm which
use Mercer kernels in order to produce nonlinear versions
of conventional linear learning algorithms. The kernel trick
allows the inner product of two input vectors in some high-
dimensional Hilbert space H (often called the feature space) to
be calculated without explicit knowledge of the feature vectors,
which form a the nonlinear projection of the input vectors in
H.



First we introduce the Mercer kernel, a continuous, sym-
metric, positive-definite function k : X × X → R, X ∈ Rn
(or Cn). Mercer’s theorem states that any Mercer kernel k(·, ·)
can be expressed as the inner product of some fixed nonlinear
function {φ(x) : X → H1, x ∈ X},

k(xi,xj) = 〈φ(xi), φ(xj)〉H1
, (1)

where H1 is a real- or complex-valued reproducing kernel
Hilbert space, for which k(·, ·) is a reproducing kernel and
〈·, ·〉H1

is the corresponding inner product in H1.
Equation (1) states that if xi and xj are mapped onto H1 by

φ(xi) and φ(xj), respectively, then the inner product of these
functions can be calculated by evaluating the kernel k(xi,xj),
even if the mapping φ(·) is unknown. This result is known as
the Kernel trick.

The Gaussian kernel is frequently used in real world appli-
cations with particular success in time series prediction prob-
lems. It is the expansion function for an infinite dimensional
feature space and is given by

k(xi,xj) = exp
(
−||xi − xj ||2

)
(2)

and used throughout this study [7]. While other kernels could
be chosen, the Gaussian kernel has a physical interpretation
as a measure of similarity, which is fitting here, and has out
performed other candidate kernels (triangular and polynomial)
in other similar work [9], [13]. The choice, or construction,
of kernels is very much an open problem and the subject of
ongoing research.

III. PREDICTION ALGORITHMS

A. Prediction Set-up

The prediction problem is outlined in Fig. 1, whereby the
purpose of a potentially nonlinear function f(·) is to look ∆
samples ahead in time, estimating yt ∈ Rn (or Cn) from the
input vector xt ∈ Rm (or Cm) containing space-time data
comprising measurements yt−∆, yt−∆−1, .... The predictor
is written

yt = f(xt) . (3)

The aim in the context of a prediction problem is to find an
estimate f̂(·) of f(·) which minimises the estimation error in
the mean squared sense, i.e.

J =
∑
t

|et|2 =
∑
t

|yt − f̂(xt)|2 (4)

The linear approximation of this problem is given by f̂(xt) =
Axt where A ∈ Rn×m (or Cn×m) is a coefficient matrix
whose entries are to be determined. Many estimation schemes
based on this approximation have been studied.

Alternatively, we can state the approximation in terms of
the mapping φ(·) to place us in a nonlinear setting, writing
f̂(xt) = Aφ(xt) with A ∈ Rn×l (or Cn×l). The proper-
ties of Mercer kernels make it possible to derive estimation
schemes for f(·) in a high l-dimensional feature space without

f̂(·)xt ŷt
z−∆ +

yt

et
−

Fig. 1. Nonlinear system f(·) set-up to predict the vector quantity yt some
∆ samples ahead based on input xt.

performing calculations in such a space. This combines sim-
ple implementation of linear methods with the advantageous
properties of working with a nonlinear mapping.

In the remainder of this section two popular linear al-
gorithms are discussed, the least mean squares (LMS) and
recursive least squares (RLS) algorithms, are presented in their
conventional linear and kernelised forms. Since we are only
concerned with real valued wind speed, the proceeding sec-
tions assume all quantities are real valued and the conjugations
necessary in the complex case are omitted.

B. Kernel LMS

The LMS algorithm comprises an update scheme based on
gradient descent for the coefficient matrix A given by

A0 = 0n×m (5)
et = yt −Atxt (6)

At+1 = At + µetx
T
t , (7)

where the prediction ŷt = Atxt and µ is the positive
learning rate which controls the trade-off between confidence
in individual samples and convergence speed.

When kernelised, the update step (7) becomes

At+1 = At + µetφ
T(xt) , (8)

however to express the algorithm in terms of inner products
it is more convenient to wright

At+1 = µ

t∑
i=1

eiφ
T(xi) , (9)

which allows the prediction to be expressed as

ŷt = µ

t∑
i=1

eiφ
T(xi)φ(xt) . (10)

Finally, if φ(·) is chosen to be an expansion function of some
reproducing kernel Hilbert space, the inner product in (10) can
be computed using the corresponding generating kernel k(·, ·),
i.e.

ŷt = µ

t∑
i=1

eik(xi,xt) . (11)

Notice however that as t increases so does the number of terms
in the sum required to produce and estimate. This quickly be-
comes impractical and must be avoided. We therefore impose a



sparsity constraint, by retaining a finite dictionary, D, of input
vectors. At each time step t the input vector is compared to
the dictionary Dt−1; if the minimum distance between xt and
Dt−1 exceeds some sparsity parameter ν, it is added to the
dictionary, i.e. Dt := Dt−1 ∪ {xt}, else Dt := Dt−1. The
estimation is now

ŷt = µ
∑

i∈Dt−1

eik(xi,xt) . (12)

C. Kernel RLS

The RLS algorithm attempts to minimise the cost function
(4) at each time step, rather than the mean squared error as in
the LMS algorithm. The cost function is rewritten as

J(w) =

t∑
i=1

(yi −Aφ(xi))
2 = |Yt −ΦT

tw|2 , (13)

where Yt and Φt are output and projected input data matrices,
and w is a weight vector. As before, working in some
high dimensional feature space is undesirable, so writing the
optimal weight vector as wt =

∑t
i=1 αiφ(xi) = Φtα we use

the kernel trick to express the cost function as

J(α) = |Yt −Ktα|2 , (14)

where [Kt]i,j = k(xi,xj); i, j = 1, ..., t, is called the kernel
matrix.

In theory the minimiser α = K−1
t Yt could be computed

recursively using the conventional RLS algorithm, however,
as with the kernalised LMS algorithm, the complexity of the
calculation would increase with each new sample, in addition
to possible over-fitting when the number of samples becomes
large. We therefore sparsify the algorithm by retaining a finite
dictionary of samples and replacing Kt with the dictionary
kernel matrix [K̃t]i,j = k(xi,xj); i, j ∈ D, and αt with the
reduced weights α̃t.

The derivation of the KRLS algorithm is lenghthy and
involved, and space here is limited so the update steps are
stated without proof. The full derivation, and pseudo code of
its implementation, can be found in the original paper [9].

Initialisation: K̃1 = [k(x1,x1)], K̃−1
1 = [1/K̃1], α̃1 =

[y1/K̃1], P1 = [1], sparsity parameter: ν.
for t=2,3,...

Compute: k̃t−1(xt) where [k̃t−1(xt)]i = k(xi,xt), i ∈ D
Make Prediction: ŷt = k̃

T
t−1(xt)α̃

Compute: at = K̃−1
t−1k̃t−1(xt)

Compute: δt = k(xt,xt) + k̃
T
t−1(xt)at

Case 1: The new sample is approximately linearly inde-
pendent with respect to the current dictionary, satisfying
δt > ν, therefore the new sample, xt, is added to the
dictionary. The matrices K̃−1

t , Pt and α̃t are updated as
follows:

K̃−1
t =

1

δt

[
K̃−1
t−1 + ata

T
t −at

−aT
t 1

]
(15)

Pt =

[
Pt−1 0
0T 1

]
(16)

α̃t =

[
α̃t−1 − at

δt
(yt − k̃

T
t−1(xt)at)

1
δt

(yt − k̃
T
t−1(xt)at)

]
(17)

Case 2: The new sample is approximately linearly dependent
with respect to the current dictionary, satisfying δt ≤ ν, so
the new sample is not added to the dictionary and K̃−1

t =
K̃−1
t−1. The matrices Pt and α̃t are updated as follows:

Pt = Pt−1 −
Pt−1ata

T
tPt−1

1 + aT
tPt−1at

(18)

qt
def
=

Pt−1at
1 + aT

tPt−1at
(19)

α̃t = α̃t−1 + K̃−1
t qt

(
yt − k̃

T
t−1(xt)at

)
(20)

end

D. Sparsity

Both the KLMS and KRLS algorithms retain a dictionary
of input samples as a sparse representation of the complete
history of input samples up to some time. It is an important
property of the dictionary that it is finite, and it can be shown
to be so with only mild conditions on the data and kernel
function. If x ∈ X and φ(x) ∈ H then if X is compact, and
the sparsity parameter is positive (ν > 0), the dictionary will
be finite. For a rigorous proof, see [9].

It should be noted that for these algorithms to be fully
adaptive they should incorporate some forgetting mechanism
whereby out-of-date dictionary elements are ‘forgotten’ in
order track changing dynamics of the process being modelled.
A sophisticated multi-kernel LMS algorithm is developed [13]
which includes this feature, as well as the ability to combine
multiple kernel functions. The drawback, of course, is the need
to determine the parameters for each of these mechanisms.

IV. CASE STUDY

A. Test Data

The data used for testing is from the Hydra dataset of
hourly mean potential wind at multiple locations across the
Netherlands. Six locations within 150km of each other are
considered here with measurements from 2001 used as a
training set and data from 2002 used for testing. The measured
wind speed has been corrected for the effects of shelter from
buildings or vegetation. The resulting potential wind is an
estimate of the wind speed that could have been measured at
10m height if the station’s surroundings were free of obstacles
and flat with a roughness length equal to that of grass onshore
(0.03m) and water offshore (0.002m). For more information on
this process see [16]. In addition, the data as been normalised
so that it occupies the range [0, 1].



This transformation aids spatial prediction by removing
biases present at individual measurement locations that would
otherwise interfere with the spatio-temporal correlation of the
data. The procedure is simple to implement once information
regarding the terrain surrounding a weather station is known.

B. Implementation

The KLMS and KRLS are employed to predict the wind
speed at the six locations which are embedded in the vector
yt ∈ R6. The input vector x∆|t for a ∆ = 1 step-ahead
prediction is the concatenation of p lagged values of yt, i.e.
x1|t = (yT

t−1, ...,y
T
t−p)

T, and for horizons of ∆ > 1 where
not all lags are available, predictions are used such that

x∆|t =



ŷ∆−1|t−1

...
ŷ1|t−∆+1

yt−∆
...

yt−p


, (21)

where ŷ∆|t denotes the prediction of yt made ∆ steps ahead.
This is the so called direct forecasting approach. In this study
we are only concerned with forecast horizons up to 6 hours,
or ∆ = 1, ..., 6 and the forecasts for each horizon are made in
parallel by distinct predictors. The number of temporal lags is
a trade off between accuracy and computational expense, for
the KLMS p = 6 and KRLS p = 3 since the improvement in
accuracy was negligible for greater values.

The sparsification parameter and LMS learning rate are
determined heuristically by exhaustive search to minimise the
residual error on the training data. The sparsification parameter
is ν = 0.02 for the KRLS and ν = 0.1 for the KLMS. The
KLMS learning rate was chosen to be µ = 0.01.

C. Benchmarks

An important benchmark is the persistence forecast which
supposes that the future wind speed will be the same as
the most recent measurement. While its implementation is
trivial its performance is still considered acceptable by many
practitioners, particularly in situations where more complex
approaches offer only modest gains. The persistence forecast
∆-hours ahead is given by

ŷ∆|t = yt−∆ . (22)

In order to compare the kernelised algorithms to conven-
tional techniques and highlight the value of spatial informa-
tion, two non-recursive linear time series models are used
as further benchmarks in addition to the conventional LMS
and RLS algorithms. The first is the non-spatial autoregressive
(AR) model which is given by

ŷ∆|t =

∆−1∑
i=1

aiŷ∆−i|t−i +

p∑
i=∆

aiyt−i (23)

for each location. The number of lags p is determined by
the Akaike information criterion, and the parameters ai are

determined by maximum likelihood estimation assuming in-
dependent identically distributed (i.i.d) Gaussian prediction
errors.

The second is the vector generalisation of AR, the vector
autoregressive model (VAR). As in the multivariate kernelised
algorithms, the measurements at multiple locations are embed-
ded in the vector yt and the model is written

ŷ∆|t = Ax∆|t , (24)

where xt is given by Equation (21). Once again the number
of lags p is determined by the Akaike information criterion
and assuming i.i.d Gaussian errors the coefficient matrix A ∈
Rn×np is determined by maximum likelihood estimation.

The conventional LMS algorithm, with update scheme given
in equations (5)–(7) and learning rate µ = 0.0005, and
conventional RLS with update scheme

et = yt −Atxt (25)

kt =
xT
tQt

1/λ+ xT
tQtxt

(26)

Qt+1 = Qt −Qtxtkt (27)
At+1 = At + etkt , (28)

and forgetting factor λ = 0.9995 are also included for
comparison with their kernelised versions. The look-ahead
indexing has been dropped here to avoid notational clutter but
the principle still applies.

The AR and VAR methods are non-recursive, that is to say
that their parameters are estimated directly from the training
data and are then fixed throughout the test period. The other
methods, with the exception of persistence, are recursive and
as such are initialised and then run sequentially through the
training and test data, updating their parameter estimates at
each step.

D. Results

Performance is evaluated in terms of root mean squared
error, which is given by the expression

RMSE∆ =

√√√√ 1

T

T∑
t=1

(ŷ∆|t − yt)2 (29)

for the samples y1, ..., yT in the test dataset at each location
and for each forecast horizon ∆ = 1, ..., 6.

The performance of the kernelised algorithms and bench-
marks is illustrated in Figure 2 in terms of mean RMSE
accross the six sited in the dataset. The most simplistic
approaches, persistence and AR perform significantly worse
at all forecast horizons than the more sophisticated VAR, RLS
and KRLS. Both the LMS and its kernalised version (KLMS)
have intermediate performance, reflective of their complexity,
though the KLMS performs particularly poorly for the 1 and
2 hour ahead predictions.

The improvement over persistence is shown in Figure 3 for
the VAR, RLS and KRLS predictions. All three exhibit similar
performance for 1 and 2 hour ahead forecasts, but the KRLS
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Fig. 3. Percentage improvement vs. persistence for the VAR and KRLS
forecasts.

outperforms the two linear methods for the longer horizons.
It is also notable that the KLMS improves relative to the
LMS at longer forecast horizons. In both cases the kernelised
versions of linear algorithms offer improved 5 and 6 hour
ahead predictions.

V. CONCLUSIONS

For the short-term spatio-temporal prediction of wind speed,
we have presented two examples from a new class of learning
algorithms called kernel methods. The kernel least mean
squares and kernel recursive least squares algorithms are non-
linear extensions of their conventional linear forms and have
been applied to a dataset comprising wind speed measurements
made at six locations in the Netherlands over a period of 2
years. The KRLS in particular shows significant improvement
over several established linear benchmarks, especially for
longer forecast horizons.
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