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MOTIVATION



HIGH-DIMENSIONAL ENERGY FORECASTING

Decision-makers (TSOs, DSOs, traders) require forecasts of multiple quantities to operate
efficiently and manage risk:

∙ How much demand will be met by wind and solar power tomorrow?
∙ What is the chance of power flows exceeding network capacity?
∙ Will I get a better price if I sell my power day-ahead or intraday?
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HIGH-DIMENSIONAL ENERGY FORECASTING

Probabilistic forecasts quantify uncertainty by expressing predictions as probability
density functions.
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Figure 1: Fan plots of density forecasts for three locations and 48 time periods

⚠ These forecasts do not describe spatial or temporal dependency.
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HIGH-DIMENSIONAL ENERGY FORECASTING

Probabilistic forecasts quantify uncertainty by expressing predictions as probability
density functions.
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Figure 2: Space-time trajectories (or scenarios/samples) drawn from multivariate probabilistic
forecast. These forecasts contain dependency information but are difficult to visualise.

This quickly becomes a high-dimensional problem! 5



HIGH-DIMENSIONAL ENERGY FORECASTING

Gaussian copulas provide a suitable framework for describing such high-dimensional
predictive distributions:

∙ Margins of the copula are the familiar density forecasts
∙ Dependency structure specified by a covariance matrix, Σ
∙ Scales well (compared to other copulas) but limited by estimation of the covariance
matrix

The remainder of this talk is concerned with this covariance matrix and the possibility
that it:

1. has a complex structure, and/or
2. varies over time, perhaps as a function of some covariate.
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COVARIANCE FUNCTIONS AND
MATRICES



COVARIANCE FUNCTIONS

Consider a random process Zt(s, l) at location s, forecast lead-time l, and forecast issue
time t.

A covariance function, Ct, is stationary if the covariance

cov(Zt(s, l), Zt(s+ h, l+ u)) = Ct(h,u) (1)

depends only on separation (h,u). Furthermore, Ct is isotropic if it is invariant to the
direction of h and u

cov(Zt(s, l), Zt(s+ h, l+ u)) = Ct(∥h∥, |u|) . (2)
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COVARIANCE FUNCTIONS

Table 1: Some parametric classes of isotropic covariance functions where C(h) takes the form
C(∥h∥; ξ). The Whittle–Matérn covariance is defined in terms of the modified Bessel function of the
second kind Kν .

Class Function C(r; ξ) Parameters ξ
Powered Exponential σ2e−(θr)γ 0 < γ ≤ 2; θ > 0; σ ≥ 0
Whittle–Matérn σ2 2

1−ν

Γ(ν) (θr)Kν(θr) ν > 0; θ > 0; σ ≥ 0
Cauchy σ2(1+ (θr)γ)−ν 0 < γ ≤ 2; ν > 0; θ > 0;σ ≥ 0
Spherical σ2

(
1− 2

π (
r
θ

√
1− ( rθ )

2 + sin−1 r
θ )
)

c(r) = 0 if r > θ; σ2 ≥ 0; θ > 0
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COVARIANCE MATRICES

Given the separation, (∥h∥, |u|) between all pairs of variables i and j, given by Ri,j, the
dynamic (time-dependent) covariance matrix Σt may be formed as

Σt =


Ct(R1,1) Ct(R1,2) . . . Ct(R1,p)

Ct(R2,1)
. . . ...

...
Ct(Rp,1) . . . Ct(Rp,p)

 . (3)

Therefore, we can specify a covariance matrix of arbitrary size by a covariance function,
with a small number of parameters, and the known separation matrix, R.
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COVARIANCE MATRICES

Alternatively we can consider a matrix decomposition of the covariance matrix or its
inverse, in this case the Modified Cholesky Decomposition of Σ−1 [Pourahmadi, 1999],

Σ−1 = T⊤D−2T , (4)

where D2 is a diagonal matrix with D2
jj = exp(ηj+d), for j = 1, . . . ,d, and

T =


1 0 0 · · · 0

η2d+1 1 0 · · · 0
η2d+2 η2d+3 1 · · · 0
...

...
... . . . ...

ηq−d+2 ηq−d+3 · · · ηq 1

 . (5)
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FLEXIBLE COVARIANCE MATRICES

However, what if the dependency structure we would like to model is

∙ Non-stationary, i.e. Ct(·) depends on specific location s or lead time l, or
∙ Dynamic, evolves over time or via a random process or via dependence on a
time-varying covariate?

We can model these behaviours in a parsimonious fashion by allowing the parameters to
covariance functions Ct(·), or elements of the modified Cholesky decomposition ηi to be
additive models of covariates (which may include s and/or l).
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FLEXIBLE COVARIANCE MODELLING



MAIN IDEA: FLEXIBLE COVARIANCE MODELLING

Let C(r; ξ) be a covariance function parametrised by the m-dimensional parameter vector
ξ. The elements of ξ are modelled via

gj(ξj) = Aj,tβj +
∑
i

fj,i(x
Sj,i
t ), for j = 1, . . . ,m, (6)

a Generalised Additive Model, the parameters of which (including regularisation) are to
be estimated. Details in [Browell et al., 2022].

In the MCD case, we model a subset of the elements of η in exactly the same way,
selection precisely of which ηi to model is made via a boosting algorithm. Details in
[Gioia et al., 2022].
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EXAMPLES



EVALUATION FRAMEWORK

The only difference between models is the covariance structure, all margins/density
forecasts are the same.

We use standard scoring rules for multivariate probabilistic forecasting:

∙ Multivariate Energy Score (generalisation of CRPS)
∙ Log (or Ignorance) Score
∙ Variogram Score (with p = 0.5 and p = 1)
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TEMPORAL STRUCTURE IN WIND POWER FORECASTS
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Figure 3: Empirical temporal
dependency structure of wind
power forecasts

The temporal dependency structure of wind power forecast
is non-stationary and complex.

Modelled with exponential correlation function and cubic
splines: θ becomes a smooth function of lead-time

θ = θ̂cr(d) = β0 + fcr(d) .

where d is distance along the diagonal.
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TEMPORAL STRUCTURE IN WIND POWER FORECASTS
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(a) Empirical
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(b) Constant θ̂ (Stationary)
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(c) GAC θ̂cr(d)

Figure 4: Temporal dependency structure of wind power forecasts from 0 to 48 hours-ahead.
Forecasts have a visible non-stationary structure. The width of the diagonal ridge indicates how
long forecast errors are likely to persist for in time.
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TEMPORAL STRUCTURE IN WIND POWER FORECASTS

Table 2: Results different temporal dependency models for wind power forecasting. Underline
indicates that the corresponding skill score relative to the GAC model are not significantly different
from zero.

Name Energy Log VS-0.5 VS-1
Empirical 7.139 Inf 1409 5444
Constant 7.142 19.86 1409 5439
GAC 7.137 15.46 1406 5433
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REGIONAL NET-DEMAND

Figure 5: A map of the regions (Grid Supply Point groups) forming GB’s electricity grid.
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REGIONAL NET-DEMAND

Figure 6: Model selection
results. The diagonal
corresponds to the elements
of D, the rest to those of T.
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REGIONAL NET-DEMNAD

Scot - Rest South - Rest Lon - Neigh.
Log CRPS Log CRPS Log CRPS

Indep 5879 6169 4495 4310 2842 1491
Static 4645 5790 4206 4221 2850 1489

Cal 4543 5701 4117 4150 2715 1454
Cal+Ren 4541 5698 4121 4150 2695 1450

Full 4545 5703 4122 4153 2703 1452

Table 3: Day-ahead performance when forecasting the marginal distribution of differences in
net-demand across key boundaries. The best score in each column has been underlined.
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SUMMARY



SUMMARY

∙ We present two approachs to model dynamic and non-stationary covariance structures
flexibly

∙ Doing so may substantially improve the quality of multi-variate probabilistic forecasts
(and other covariance-based models!)

∙ There is much still to be done to understand and improve model selection and
estimation...

Full details including more examples, code and data can be found in
[Browell et al., 2022, Gioia et al., 2022].
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