

DYNAMIC COVARIANCE MODELS FOR WIND POWER AND NET-DEMAND FORECASTING

Wind Energy Science Conference

Jethro Browell, Vincenzo Gioia, Matteo Fasiolo, Ciaran Gilbert

24 May 2023

School of Mathematics and Statistics University of Glasgow jethro.browell@glasgow.ac.uk

- 1. Motivation: High-dimensional energy forecasting
- 2. Covariance functions and matrices
- 3. Flexible Covariance Modelling
 - 3.1 Covariance function
 - 3.2 Decomposition
 - 3.3 Additive models
- 4. Example 1: Wind power
- 5. Example 2: Net-demand
- 6. Summary

This work was supported by UKRI via EPSRC Innovation Fellowship System-wide probabilistic energy forecasting (EP/R023484/2).

MOTIVATION

Decision-makers (TSOs, DSOs, traders) require forecasts of multiple quantities to operate efficiently and manage risk:

- \cdot How much demand will be met by wind and solar power tomorrow?
- \cdot What is the chance of power flows exceeding network capacity?
- · Will I get a better price if I sell my power day-ahead or intraday?

Probabilistic forecasts quantify uncertainty by expressing predictions as probability density functions.

Figure 1: Fan plots of density forecasts for three locations and 48 time periods

Probabilistic forecasts quantify uncertainty by expressing predictions as probability density functions.

Figure 2: Space-time trajectories (or scenarios/samples) drawn from multivariate probabilistic forecast. These forecasts contain dependency information but are difficult to visualise.

This quickly becomes a high-dimensional problem!

Gaussian copulas provide a suitable framework for describing such high-dimensional predictive distributions:

- \cdot Margins of the copula are the familiar density forecasts
- \cdot Dependency structure specified by a covariance matrix, Σ
- · Scales well (compared to other copulas) but limited by estimation of the covariance matrix

The remainder of this talk is concerned with this covariance matrix and the possibility that it:

- 1. has a complex structure, and/or
- 2. varies over time, perhaps as a function of some covariate.

COVARIANCE FUNCTIONS AND MATRICES

Consider a random process $Z_t(s, l)$ at location s, forecast lead-time l, and forecast issue time t.

A covariance function, C_t , is *stationary* if the covariance

$$\operatorname{cov}(Z_t(\mathbf{s},l),Z_t(\mathbf{s}+\mathbf{h},l+u)) = C_t(\mathbf{h},u)$$
(1)

depends only on separation (h, u). Furthermore, C_t is *isotropic* if it is invariant to the direction of h and u

$$cov(Z_t(\mathbf{s}, l), Z_t(\mathbf{s} + \mathbf{h}, l + u)) = C_t(||\mathbf{h}||, |u|)$$
 (2)

Table 1: Some parametric classes of isotropic covariance functions where C(h) takes the form $C(||h||; \xi)$. The Whittle–Matérn covariance is defined in terms of the modified Bessel function of the second kind K_{ν} .

Class	Function <i>C</i> (<i>r</i> ; ξ)	Parameters ξ
Powered Exponential	$\sigma^2 e^{-(heta r)^{\gamma}}$	$0<\gamma\leq$ 2; $ heta>$ 0; $\sigma\geq$ 0
Whittle-Matérn	$\sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)}(\theta r) K_{\nu}(\theta r)$	$ u>0;\; heta>0;\; \sigma\geq 0$
Cauchy	$\sigma^2(1+(\theta r)^{\gamma})^{-\nu}$	$0<\gamma\leq$ 2; $ u>$ 0; $ heta>$ 0; $\sigma\geq$ 0
Spherical	$\sigma^2 \left(1 - \frac{2}{\pi} \left(\frac{r}{\theta} \sqrt{1 - \left(\frac{r}{\theta} \right)^2} + \sin^{-1} \frac{r}{\theta} \right) \right)$	$c(r) = 0$ if $r > \theta$; $\sigma^2 \ge 0$; $\theta > 0$

Given the separation, (||h||, |u|) between all pairs of variables *i* and *j*, given by $R_{i,j}$, the dynamic (time-dependent) covariance matrix Σ_t may be formed as

$$\Sigma_{t} = \begin{pmatrix} C_{t}(R_{1,1}) & C_{t}(R_{1,2}) & \dots & C_{t}(R_{1,p}) \\ C_{t}(R_{2,1}) & \ddots & & \vdots \\ \vdots & & & & \\ C_{t}(R_{p,1}) & \dots & C_{t}(R_{p,p}) \end{pmatrix}$$
(3)

Therefore, we can specify a covariance matrix of arbitrary size by a covariance function, with a small number of parameters, and the known separation matrix, *R*.

Alternatively we can consider a matrix decomposition of the covariance matrix or its inverse, in this case the Modified Cholesky Decomposition of Σ^{-1} [Pourahmadi, 1999],

$$\Sigma^{-1} = \mathbf{T}^{\top} \mathbf{D}^{-2} \mathbf{T} \,, \tag{4}$$

where \mathbf{D}^2 is a diagonal matrix with $D_{jj}^2 = \exp(\eta_{j+d})$, for $j = 1, \dots, d$, and

$$\mathbf{T} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ \eta_{2d+1} & 1 & 0 & \cdots & 0 \\ \eta_{2d+2} & \eta_{2d+3} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \eta_{q-d+2} & \eta_{q-d+3} & \cdots & \eta_q & 1 \end{pmatrix}.$$
 (5)

However, what if the dependency structure we would like to model is

- · Non-stationary, i.e. $C_t(\cdot)$ depends on specific location **s** or lead time *l*, or
- Dynamic, evolves over time or via a random process or via dependence on a time-varying covariate?

We can model these behaviours in a parsimonious fashion by allowing the parameters to covariance functions $C_t(\cdot)$, or elements of the modified Cholesky decomposition η_i to be additive models of covariates (which may include **s** and/or *l*).

FLEXIBLE COVARIANCE MODELLING

Let $C(r; \boldsymbol{\xi})$ be a covariance function parametrised by the *m*-dimensional parameter vector $\boldsymbol{\xi}$. The elements of $\boldsymbol{\xi}$ are modelled via

$$g_j(\xi_j) = \mathbf{A}_{j,t} \boldsymbol{\beta}_j + \sum_i f_{j,i}(\mathbf{x}_t^{S_{j,i}}), \quad \text{for} \quad j = 1, \dots, m,$$
(6)

a Generalised Additive Model, the parameters of which (including regularisation) are to be estimated. Details in [Browell et al., 2022].

In the MCD case, we model a subset of the elements of η in exactly the same way, selection precisely of which η_i to model is made via a boosting algorithm. Details in [Gioia et al., 2022].

EXAMPLES

The only difference between models is the covariance structure, all margins/density forecasts are the same.

We use standard scoring rules for multivariate probabilistic forecasting:

- Multivariate Energy Score (generalisation of CRPS)
- · Log (or Ignorance) Score
- · Variogram Score (with p = 0.5 and p = 1)

The temporal dependency structure of wind power forecast is non-stationary and complex.

Modelled with exponential correlation function and cubic splines: θ becomes a smooth function of lead-time

$$heta = \hat{ heta}_{
m cr}(d) = eta_0 + f_{
m cr}(d)$$
 .

Figure 3: Empirical temporal dependency structure of wind power forecasts

where *d* is distance along the diagonal.

Figure 4: Temporal dependency structure of wind power forecasts from 0 to 48 hours-ahead. Forecasts have a visible non-stationary structure. The width of the diagonal ridge indicates how long forecast errors are likely to persist for in time. Table 2: Results different temporal dependency models for wind power forecasting. <u>Underline</u> indicates that the corresponding skill score relative to the GAC model are not significantly different from zero.

Name	Energy	Log	VS-0.5	VS-1
Empirical	7.139	Inf	1409	5444
Constant	<u>7.142</u>	19.86	1409	<u>5439</u>
GAC	7.137	15.46	1406	5433

Figure 5: A map of the regions (Grid Supply Point groups) forming GB's electricity grid.

Figure 6: Model selection results. The diagonal corresponds to the elements of **D**, the rest to those of **T**.

	Scot - Rest		South - Rest		Lon - Neigh.	
	Log	CRPS	Log	CRPS	Log	CRPS
Indep	5879	6169	4495	4310	2842	1491
Static	4645	5790	4206	4221	2850	1489
Cal	4543	5701	<u>4117</u>	<u>4150</u>	2715	1454
Cal+Ren	<u>4541</u>	<u>5698</u>	4121	<u>4150</u>	2695	<u>1450</u>
Full	4545	5703	4122	4153	2703	1452

Table 3: Day-ahead performance when forecasting the marginal distribution of differences in net-demand across key boundaries. The best score in each column has been <u>underlined</u>.

SUMMARY

- We present two approachs to model dynamic and non-stationary covariance structures flexibly
- Doing so may substantially improve the quality of multi-variate probabilistic forecasts (and other covariance-based models!)
- There is much still to be done to understand and improve model selection and estimation...

Full details including more examples, code and data can be found in [Browell et al., 2022, Gioia et al., 2022].

Papers, slides, code and more linked from www.jethrobrowell.com

References:

Browell, J., Gilbert, C., and Fasiolo, M. (2022). Covariance structures for high-dimensional energy forecasting. *Electric Power Systems Research*, 211:108446.

Gioia, V., Fasiolo, M., Browell, J., and Bellio, R. (2022). Additive Covariance Matrix Models: Modelling Regional Electricity Net-Demand in Great Britain.

Pourahmadi, M. (1999). Joint Mean-Covariance Models with Applications to Longitudinal Data: Unconstrained Parameterisation. *Biometrika*, 86(3):677–690.

Source of this theme and the demo presentation from github.com/matze/mtheme, licensed under CC BY-SA 4.0.