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ARTICLE INFO ABSTRACT

Keywords: Installed capacities of wind and solar power have grown rapidly over recent years, and the pool
Forecasting of literature on very short-term (minutes- to hours-ahead) wind and solar forecasting has grown
Wind Power in line with this. This paper reviews established and emerging approaches to provide an up-to-
Solar Power date view of the field. Knowledge transfer between wind and solar forecasting has benefited the
Renewable Energy field and is discussed, and new opportunities are identified, particularly regarding use of remote
Probabilistic Forecasting sensing technology. Forecasting methodologies and study design are compared and recommen-
Open Data dations for high quality, reproducible results are presented. In particular, the choice of suitable

benchmarks and use of sufficiently long datasets is highlighted. A case study of three distinct
approaches to probabilistic wind power forecasting is presented using an open dataset. The case
study provides an example of exemplary forecast evaluation, and open source code allows for its
reproduction and use in future work.

1. Introduction

The increasing penetration of wind and solar energy in power systems around the world necessitate new ways
of operating energy systems and markets. The variability and limited predictability of the wind and solar resource
introduces uncertainty for planners and operators on all time scales, from seconds and minutes ahead, to decadal
variability [1, 2] and climate change [3].

Forecasting plays a central role in minimising this uncertainty on operational time scales from real-time to a few
days ahead [4]. Quantifying uncertainty is also necessary for ‘optimal’ decision-making and risk management. Fore-
cast uncertainty is quantified in probabilistic forecasts which most commonly take the form of prediction intervals,
predictive probability density functions (univariate or multivariate), or trajectories/scenarios, though other formats
exist.

It is important to distinguish between short-term forecasting, with lead-times of hours to days ahead, and very
short-term forecasting, with lead-times of minutes to hours ahead. The World Meteorological Organisation defines the
very short-term range as up to 12 hours ahead [5], but in energy forecasting the distinction is generally methodological
rather than at fixed lead time although neither convention is consistently applied. The term nowcasting is also used to
refer to very short-term forecasting in the meteorology community, but here we will use very short-term throughout for
consistency. The main source of predictability on short-term time scales comes from Numerical Weather Prediction
(NWP), whereas the main sources of predictability on very short-term time scales are recent observations. NWP is
not well suited to very short-term forecasting because of the time required for data assimilation and computation,
and additional uncertainty introduced by weather-to-power conversion which is greater than natural variability on very
short-term time scales. For the purposes of this review, which focuses on very short-term forecasting, we are concerned
with forecasting methods based on recent observations and timescales where NWP adds limited or no value.

Wind and solar forecasts of the minutes and hours ahead are required by power system operators to manage the
balance of supply and demand, and electricity market participants to trade energy. For instance in Denmark, the coun-
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try with the highest penetration of wind energy in the world, the Transmission System Operator’s forecasts “are in five
minute resolution and are updated every few minutes using all the latest information available” [6]. While countries
such as Denmark are employing best practices such as leveraging real-time power production data, novel methods
for producing increasingly accurate forecasts are continually being proposed, new sources of observational data are
becoming available, and new ways of sharing data between parties are emerging. Current large collaborative fore-
casting projects include the European Smart4Res project [7] and several studies commissioned by the US Department
of Energy’s Solar Forecasting 2 program, such as the open-source solar forecast arbiter for forecast evaluation and
benchmarking [8]. This article reviews these advances beyond current state-of-the-art operational forecasting systems
and discusses their relative merits and potential evolution.

The expansion of wind and solar energy and research necessitates regular reviews and synthesis of advances, yet
despite sharing many common features, wind and solar forecasting are often reviewed in isolation, perhaps a result of
the relatively later development of solar power forecasting compared to wind [9]. Both wind speed and solar irradiance
exhibit spatio-temporal correlation as a result of their dependence on large-scale meteorological phenomena. As such,
some methods are effective for both wind and solar applications, such as time-series methods supplemented with
exogenous inputs or multi-variate extensions which capture spatial correlations between multiple sites. In the recent
history of very short-term wind and solar power forecasting one field has learned from the other. In this paper we
identify potential opportunities for further advances in the same vein.

Both solar power forecasting [10, 11, 12, 13, 14, 15] and wind power forecasting [16, 17, 18, 19, 20] have been
reviewed recently individually. However, very short-term horizons have received little attention in these reviews and
neither have advances in very short-term wind and solar forecasting been compared. There are only two exceptions we
are aware of: Sweeney [21] who consider wind, solar and hydro power together and discuss very short-term lead-times
briefly, but do not systematically review the field and instead provide a vision for renewable energy forecasting in
the future; and Barbieri [22] whose primary focus is very short-term solar but who also briefly mention transferable
approaches from wind literature.

Previous reviews provide detailed analysis of various modelling approaches; for solar forecasting, Antonanzas [10]
examines several approaches to persistence models for solar forecast benchmarks, Inman [12] covers clear sky models
in depth, and Ahmed [14] includes particular detail on deep learning models and sky imaging. There have been several
reviews of combined, or hybrid, models [23, 19, 16] while Giebel [17] provides an overview of the history of very short-
term forecasting as well as models using NWP inputs. Jensen details a wide range of solar evaluation metrics, including
for event-based forecasts, e.g. forecast performance for ramps [24]. Foley [18] gives average values for error metrics
for different forecast horizons. Current state of the art and future directions suggested include greater prevalence of
probabilistic forecasting [10, 25], increased focus on the economic impact of forecasts on decision making [10, 24],
weather classification or regime-based approaches [14, 21], use of high resolution - including turbine level - data and
data marketplaces [21]. Yang [15] uses a text mining approach to map forecasting and model terminology, before
also highlighting six key recent works. Inman [12] identifies the forecasting of ramp events as a particular challenge
for renewable energy integration in general. Key recommendations from these reviews include the need for a general
database of geographically dispersed sites to test models on [26], consistent benchmarking approaches across research
papers [11] as well as common evaluation metrics [10]. Lauret [27] recommends the Continuous Ranked Probability
Score (CRPS) score for probabilistic forecast evaluation.

This review proceeds with a description of the systematic literature search that has been performed and a high-level
bibliometric analysis (Section 2), after which very short-term solar (Section 3) and wind (Section 4) power forecasting
are reviewed before a summary of common research methods and comparisons between the wind and solar literature
are drawn in Section 5. While this review is by no means exhaustive, it is intended to give an overview of the variety
of approaches that have been proposed in recent years. A case study based on an open dataset is presented in Section
6 in order to reproduce and compare three distinct classes of statistical model commonly employed for wind and solar
forecasting but that are seldom compared to one another. The findings of this review and advances in very short-term
wind and solar power forecasting are discussed in Section 7 which also speculates as to the direction of future research
in this area.

R Tawn and J Browell: Preprint submitted to Elsevier Page 2 of 23



A review of very short-term wind and solar power forecasting

2. Summary of papers reviewed

We used Web of Science to conduct a literature search’, up to and including the end of 2020, for publications
on short-term and very-short-term wind and solar forecasting. The number of works in this area has clearly been
increasing substantially throughout the last decade, in line with the increases seen in both wind and solar generation
globally (Fig 1). This suggests the importance of forecasting these variable generation technologies increases as their
penetration on the grid increases [17].

1500
—— Wind Generation

. 2501 Solar Generation 1250 =
.S HE Wind Publications E
§ 200 Solar Publications 1000\:
= g
E 1501 50 g
© =
g 3
= 100; 500 —
= £
Z. =

50- 950 ©

01595 2000 2005 2010 2015 2020
Year

Figure 1: Forecasting publications broken down by wind and solar as a stacked bar chart, also plotted with global
energy generation through time. Generation data provided under CC BY 4.0, Hannah Ritchie & Max Roser,
https://ourworldindata.org/renewable-energy.

For short-term methods where lagged on-site measurements are the predominant data input, models often fall into
two broad types: traditional time series regression, and Machine Learning approaches. Of the papers examined in this
review, we found 24% included some type of regression or time series model, and 62% included a Machine Learning
(ML) model. A list of all papers included is given in table Al of the appendix. Figure 2 shows a general summary of
forecasting approaches across the literature.

The subsequent sections 3 and 4 cover the top 50 most cited results stratified by the number of publications in each
year and selected by the Web of Science search!. This selection has been limited to publications in 2014 or later, as
the aim of this work is to focus on recent trends and developments in wind and solar forecasting. The literature from
this search has also been supplemented with other references and works already known to the authors.

3. Solar power forecasting

Solar projects tend to have smaller installed capacities relative to wind projects: in the UK as of May 2020, the
average solar installation has a capacity of 1.29 kW, with only 1.8% of these exceeding 4kW [28]. Of the larger UK
projects requiring planning applications, the average installed capacity across 1171 projects was 7.2 MW, compared to
an average of 29.6 MW across 778 wind projects [29]. As such, solar generation tends to consist of a greater number
of smaller projects than wind. Sweeney et al [21] note that decentralised small scale energy sources often contribute to
localised grid congestion problems, increasing the importance of accurate forecasts for grid management. Very small

IThe search query used was ((TS=((("wind speed" OR "wind power" OR "solar" OR "renewable generation") NEAR/S ("forecast*" OR "pre-
dict*")) AND ("short term" OR "short-term" OR "very-short-term") NOT( "hydro" OR "thermal")))) AND LANGUAGE: (English)

R Tawn and J Browell: Preprint submitted to Elsevier Page 3 of 23



A review of very short-term wind and solar power forecasting

Forecasting
models

!

l

!

[ Imaging/Sensing ] ( Statistical ) ( Machine Learning ) ( Decomposition )
Time Neural Empirical
| Sky Camera Series/AR Networks N Mode
; Support —
Satellite .| (Sparse) el Vector Variational
Data VAR Machine Mode
Boosted
— LIDAR/Dual .| Markov ng (Decision) *
Doppler Chain Tree
Analog L, Gaussian %
Ensemble Processes

Figure 2: Diagram of forecasting model techniques. Neural Networks include ELM, RNN, CNN, LSTM etc; Decision tree
methods include Random Forest and Gradient boosted trees. Methods may also be implemented in an adaptive or online
framework, or include regime switching. They may also be used for probabilistic as well as deterministic forecasts.

solar systems such as household installations are often ‘behind-the-meter’, with no power production data available to
forecasters and as such are often instead incorporated in ‘net demand’ (rather than power production) forecasts [10].

Solar power production follows strong seasonal and diurnal patterns due to the changing path of the sun, which
defines the maximal possible irradiation for a given location, time and date. This is known as ‘clear sky’ irradiation,
which can be well defined by various models [12]. In addition, the passage of clouds create shadows that introduce
stochastic variability in the power time series and is much more challenging to predict [10]. Atmospheric aerosols
may also reduce surface irradiation and therefore power output. This may be caused by natural phenomenon such as
salt from sea spray, dust storms and soot from wildfires, or man-made pollution. A case study in West Africa found a
reduction in power in the range 13-37% due to dust aerosols [30]. The physical condition of the panels can also affect
production. For example, accumulation of dirt and dust have been shown to reduce energy production by 2-6%, and
snow cover can also reduce power output completely if thick enough [31].

3.1. Image-based methods

Imaging techniques may be applied to either ground-based systems or satellite images to determine and predict
future cloud cover, used in turn to forecast solar irradiance or solar power directly. Ground based sky imaging has
mainly been used for high temporal resolution forecasts up to 30 minutes ahead. For a cloud at an altitude of 2km and
a speed of 10 ms™!, this represents a field of view of 154°. The focus of this method on very short time horizons is two
fold: field of view and cloud formation and dissipation limit the skill of this method out to longer horizons [32], while
it also fills a gap that several other data sources don’t currently have the spatial or temporal resolution to match [33]
(satellite images generally have a 15 minute or slower update time for example). Methods using propagation of current
observed cloud conditions are common such as cloud motion displacement [34] or determination and propagation of
shadow position using cloud base height measurements in conjunction with images [35]. In this work clouds were
also classified by type, although persistence still outperformed this method at a horizon of 25 minutes. Pitfalls of sky
imaging systems may include errors due to perspective, image saturation in pixels close to the sun and soiling of the
cameras [15]. There is also additional expense associated with maintaining a camera system on site.

Lago [36] trains an irradiance model using satellite and weather forecast data as inputs and ground measurements
of solar irradiance at a group of sites in the Netherlands as the target variable. The learned model may then be used
more generally at other sites without the need for ground measurements, and in fact this generalised model also out-
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performed models trained with local ground data. This approach is perhaps more suited to forecasting a group of sites
rather than a single location, as a small subset of sites that do have ground-based measurements is also needed for
model training. It would be interesting to test the generalisation of this approach to other climate regimes and more
geographically dispersed sites. Harty [37] also uses both satellite and NWP data. However, they take a slightly dif-
ferent approach, producing cloud motion vector fields from both information sources and combing these via ensemble
Kalman filter. Their method improves upon using a single information source for intra-hourly forecasts for a city region.
Bellinguer [38] modelled spatio-temporal dependencies, with different models fitted conditional on NWP geopotential
height. A combination of satellite data, where the 10 most informative pixels are chosen via mutual information, and
on-site power measurements are used as inputs. Carriere [39] notes that different information sources tend to be most
beneficial at different forecast lead times, so proposed an approach including several information sources. Irradiance
time series from satellite data, NWP forecasts and lagged on-site power and temperature are supplied to the model,
leading to good performance across a range of horizons up to 36 hours ahead. Non-parametric probabilistic forecasts
were produced through an analog ensemble, using sets of similar past observations.

3.2. Probabilistic methods

Probabilistic methods allow quantification of uncertainty in the forecast and can facilitate proper risk analysis in
applications. However, only a portion of the solar forecasting literature considers probabilistic forecasts and within
this there is still sometimes a focus on general prediction intervals rather than full predictive densities.

Prediction interval approaches include a method using the variability of a time series about its mean [40]. Alter-
natively an ‘uncertainty metric’ may be determined from ensemble forecasts for points in a reference dataset, which is
then used to look up the expected error (then used as a prediction interval) using a nearest neighbours approach [41].

Full density forecasts may be parametric, where the predictive distribution is specified by a small number of param-
eters (e.g. the mean and variance of a Gaussian distribution), or non-parametric with no assumed distributional shape.
Golestaneh finds that solar forecast error distributions are not easily fitted by any common parametric distribution, so
propose non-parametric quantile forecasts using lagged power alongside meteorological measurements in an improved
Extreme Learning Machine (ELM) model [42]. This was demonstrated on a high resolution (1 minute) dataset which
may not always be available. Gaussian process regression has also been proposed with an extension to give less weight
to the observations that were more likely to be outliers [43].

3.3. Machine learning

Various machine learning techniques have been proposed for solar forecasting as they can allow for nonlinear rela-
tionships [44, 45] and learn from data without the need to make assumptions about the relationships between variables.
For the very short term (up to one hour ahead), Rana [46] showed that on-site power measurements can provide skilful
forecasts and NWP inputs (solar irradiance, temperature, humidity and wind speed) don’t further improve forecast
skill. They used an ensemble of Neural Networks, which outperformed a Support Vector Regression (SVR) model.
Feature engineering of a ‘cloud cover index’ from humidity and rainfall measurements and use of previous forecast
errors as Neural Network (NN) inputs showed improved performance compared to a NN trained without these [47].
Long Short-term Memory (LSTM) networks are a common choice for time series problems; Lee [41] demonstrates
their use with the dropout technique to produce ensemble forecasts. Alternative techniques to generate an uncertainty
interval were also compared in this work. ELM models may overcome problems of overfitting and local minima asso-
ciated with NN approaches. To reduce computational complexity, Majumder [44] used a low rank kernel ELM along
with variational mode decomposition to address the nonstationarity of solar time series. This model was tested across
a range of horizons (15 minutes to 1 day ahead). In other work using a cost function based on generalised correntropy
for the ELM improved performance, possibly due to increased robustness to outliers [48]. Tang [49] also used an
ELM to forecast solar power, in combination with pre-processing of inputs using an entropy method. The probabilistic
approach of Golestaneh [42] is also based on ELM and performs favourably in comparison to both persistence and
climatology as well as other ELM variants.

Abuella [50] used an ensemble of SVR models to generate day-ahead forecasts from NWP data; the 24 different
forecasts are then combined to give the final probabilistic forecast via a Random Forest (RF). This approach shows
improvement over individual models and could be appropriate for combining shorter-term forecasts. Eseye [51] also
used NWP variables as inputs to an Support Vector Machine (SVM) model, additionally applying wavelet decompo-
sition. However, the number of decomposed series were chosen based on previous literature rather than optimised on
the given data.
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For models with multiple data processing steps as well as model fitting, it may be advantageous to optimise all
hyper-parameters for all parts of the model process simultaneously: [52] found a 53% improvement just by using
simultaneous optimisation.

Spatio-temporal relationships are considered by including irradiance measurements from nearby sites as forecast
inputs [45]. Not only is the proposed model shown to outperform Autoregressive (AR) methods, but boosted regression
trees outperform both NN and SVR models. These models were developed only on times where clear sky irradiance
exceeded a threshold, limiting their applicability to forecasts for dawn and dusk times.

3.4. Other methods

There has also been focus on utilising spatio-temporal dependencies between sites for solar forecasting. Agoua
et al [53] propose a Vector Autoregressive (VAR) model normalising the input power time series by simulated power
to make the time series stationary. They find Least Absolute Shrinkage and Selection Operator (LASSO) is the most
effective variable selection procedure, and that conditioning on surface wind speed also adds skill to the forecasts.

The Sun4Cast system developed in the USA utilises several data sources and diverse models before producing
a final forecast through a weighted combination [54]. The very short-term models include a sky imaging system,
regression tree on pyranometer data, satellite imaging with advection and an NWP model tailored to solar forecasting
with a high refresh rate [55]. They found benefits from each model for different lead times or climate scenarios, giving
an effective combined model.

Several of the studies mentioned in previous sections may also be classified as hybrid methods. The term ‘hybrid
forecast’ is often used to refer to methods where more than one forecasting method is combined into a final forecast:
this may be simply through combining forecasts from different models [50, 41], applying some form of decomposi-
tion to the original time series and fitting different models to each resulting series [51], or where multiple different
input data sources are processed separately before being combined [37, 55], for example satellite data and irradiation
measurements. Hybrid methods often outperform a single model method, especially where a diverse set of individual
models are combined. A full recent review of hybrid models for solar forecasting is given by Guermoui [23].

4. Wind power forecasting

The very nature of the wind presents forecasting challenges: the state of the atmosphere can never be fully known,
meaning wind speed is treated as a stochastic process affected by many factors, from large scale weather systems
down to local terrain. Of course the variable of interest in forecasting is often not power but wind speed. The re-
lationship between wind speed and power is dynamic and nonlinear [56] which adds complexity and makes forecast
power particularly sensitive to wind speed in between cut-in and rated wind speed. Wind power forecast errors are
typically heteroscedastic and auto-correlated. Furthermore, production is bounded between zero and the rated capacity
of a turbine or farm. These properties violate common assumptions in statistical modeling, such as independent and
identically normally distributed errors, and should receive careful treatment in sophisticated forecasting methods.

Wake effects can influence the power output of turbines in the ‘shadow’ of others and this is highly related to wind
direction. A power drop of around 30% of capacity was seen between the first and second row at Horns Rev when the
wind direction is such that a turbine is directly behind another [57]. In cold climates, icing can reduce power output
by as much as 40% [58]. Losses in operating efficiency over time could also affect forecast accuracy: turbine aging
is estimated to cause a typical decrease in output of 0.2% per year in the first 5 years [59], although this also includes
losses due to increased downtime. Data feed quality also affects the performance of models where site measurements
are used as model inputs [60].

4.1. Regression-based methods

Past on-site measurements are widely collected by wind farm owners and are often valuable inputs when forecasting
a few hours ahead. Simple time series methods based on Autoregressive moving average (ARMA) models are well
established [17] and still form the basis of ongoing research. Zhou [61] shows that a dynamic combination of an
Autoregressive integrated moving average (ARIMA) model with recent measurements as inputs and an AR model
with inputs from NWP models is an improvement over either individual model. Other approaches using Autoregressive
models in conjunction with other models are detailed in Section 4.4 on hybrid methods.

VAR models have been proposed to capitalise on spatial dependencies between geographically dispersed sites; since
the number of model coefficients grows with the square of the number of sites, sparse models have been employed to
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reduce computational time and model complexity while improving forecast performance. For the case study presented
by Cavalcante [62], a standard VAR model with no regularisation is shown to give improvement of around 5.9% over
an AR model for a 2-hour ahead forecast, while introducing sparsity through LASSO regularisation gives a further
1% improvement. Grouping the LASSO penalty by whether an input is a lag of the predictor or not (i.e. diagonal vs
off-diagonal elements) seemed to give the best results. An adaptive LASSO estimation algorithm is proposed in [63] to
track potential changes in the VAR coefficients in an online fashion, yielding improvements relative to the equivalent
static model for 15-minute resolution data and lead-times greater than 30-minutes.

Dowell developed probabilistic forecasts based on the logit-normal distribution in a VAR framework [64] for 5-
minute ahead wind power forecasting; training on a window of most recent data allowedwas-ased-te-allew for changes
in the sparsity through time. In a deterministic setting without the logit-normal transformation, and based on hourly
mean powers, this method was outperformed by the LASSO-VAR approach. Correlation between farms has also been
used to determine the sparsity of a VAR model [65], where the overall sparsity and number of non-zero coefficients
for each farm can also be controlled. This was shown to outperform a standard LASSO-VAR model, but not compared
against the sparsity structured LASSO in [62].

Capturing changes in VAR coefficients over time has been considered in adaptive frameworks where changes are
tracked in an online setting [62, 64]. These adaptive methods improve over static equivalents, but inherently track
changes with some lag and smoothing. Explicitly conditioning VAR coefficients on large-scale weather patterns was
found to improve wind speed predictions from 1-6 hours ahead [66] but has not been applied to wind power.

For sites that wish to benefit from the improvements of spatio-temporal forecasting without revealing potentially
commercially sensitive information, privacy preserving approaches have been developed. These may be grouped into
three broad categories, each with their own disadvantages [67]: data transformation that may lead to a trade-off be-
tween privacy and model accuracy; multi-party computation [68] which may require a central coordinator and where
similarity between model inputs and targets may lead to a breach in data confidentiality, or where using encryption tech-
niques significantly increases computation time; and decomposition into parallel sub-problems which require iterative
solutions - and each iteration progressively reveals more information to the participating data owners.

4.2. Machine learning

As with solar forecasting, various machine learning techniques have been applied to very short-term wind power
forecasting. A comparison of SVR, decision trees and Random Forest models found Random Forest to give the lowest
mean absolute percentage error [69] although no feature engineering was explored, which has been shown to play a
significant role in good model performance in other works [70]. Correction of the output of an SVM using a Markov
Chain showed improvement over a basic SVM approach [71]. The probabilistic output of a Markov Chain appears
to be discarded in favour of a point forecast with ‘fluctuation intervals’. A combination of two kernels (wavelet and
polynomial) in an SVM model improved wind speed forecasts relative to the use of just a wavelet kernel [72]. The
recent trend in wind speed (increasing,decreasing or stable) was also used to train separate models for these regimes,
giving a slight improvement over a single model for all conditions.

A multi-objective approach was applied to NNs in [73], having separate objective functions for bias and variance.
Similar multi-objective approaches have also been used on decomposed time series and are detailed in that section [74,
75]. Khodayar [76] used autoencoders for unsupervised feature learning and ‘rough’ neurons to better process noisy
data, showing superior performance to other NN models. To its credit, forecast evaluation is based on a full year
of out-of-sample data using the open source Western Wind dataset [77]. Neural Networks were also used ased by
Rodriguez [78] for 10-minute-ahead microgrid control.

Graph Neural Networks were used along with an LSTM for feature extraction to identify and utilise spatio-temporal
relationships between sites by Khodayar [79], giving improvement over both persistence and other ML benchmarks.
Inclusion of other metrics such as maximum observed error and correlation matrix of forecasts as well as usual average
error metrics enhanced the analysis in this work, and the use of an open dataset is also a good step towards replication
and comparison of research methods.

Hossain [80] also used convolutional NNs and Gated Recurrent Unit (GRU) layers for feature selection and pro-
cessing of multiple input data sources respectively. They found improvement over other ML approaches at two case
study sites.

De-noising of wind speed time series using Singular Spectrum Analysis (SSA) along with a fuzzy Neural Network
model outperformed ARIMA and other NN implementations for a group of sites in China [81]. A novel neighbourhood
LSTM network was proposed by Zhang [82] and claims to take causality, rather than just correlation, between variables
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into account, outperforming other ML methods in the study. Chen [83] compares artificial intelligence methods with
Autoregressive models, finding that both an artifical Neural Network and an Adaptive Neuro-Fuzzy Inference System
(ANFIS) marginally outperform an ARMA model for 10 minutes ahead forecasts, but that the ARMA model has
superior performance for hour-ahead forecasts.

Many of the hybrid and decomposition approaches detailed in the following sections also make use of machine
learning models.

4.3. Decomposition methods

Decomposition methods are based on the premise that the wind speed or power time series contain different fre-
quency signals with different characteristics, and that modelling each of the decomposed series separately can lead to
overall improvement in forecast skill [84, 85, 86]. Empirical Mode Decomposition (EMD) is based purely on the data
and splits the original time series into several Intrinsic Mode Functions (IMFs), which can each have time varying
frequency. As such, this method is applicable to nonlinear and non-stationary data [87].

Ensemble EMD, adding a noise term to the original signal before the decomposition, may be used to minimise
mode mixing between the IMFs. Using ensemble EMD, Zhang [86] applied an ANFIS model to those IMFs classed
as ‘nonlinear’ and a seasonal ARIMA model to those classed as ‘periodic’. However, the judgement of which model
to apply seems to have been made manually which may not be appropriate for real-world applications. Similarly, IMFs
may be classed as high or low frequency signals, with different models applied to each; Liu [84], used an LSTM network
for low frequency signals to capture longer-term trends, with an Elman NN for higher frequency IMFs. Similarly, a
combination of ARIMA and NNs has been demonstrated to fit probabilistic forecasts to decomposed series [88]. An
alternative approach fitted multiple different NNs to each IMF, with the final forecast for each IMF being a weighted
combination of these [89].

To reduce the number of models estimated, Lu [85] used permutation entropy to group similar IMFs. An SVM was
then used to forecast each series, outperforming both methods with no decomposition and those with decomposition
but not using the permutation entropy approach. Decomposition has been combined with multi-objective optimisation
for both accuracy and stability. This has been implemented with both Elman [74] and wavelet Neural Networks [75].
In both works the proposed methods outperformed single objective models.

Wavelet decomposition also results in the decomposition of a time series into multiple signals with different typical
frequencies; it was found that further decomposing the highest frequency of these series improved forecasts [90]. Vari-
ational Mode Decomposition (VMD) is another decomposition technique, where each mode has a limited bandwidth.
Zhang [91] found this outperforms EMD for the sites analysed.

4.4. Hybrid (combination) models

Hybrid models are based on the premise that a combination of several forecasts from different models, or where
models use different information sets as inputs, commonly outperform a single model [92]. This does rest on the
assumption that no model is the true representation of the underlying data generating process, as this single model, if
known, would outperform any combination of ‘misspecified’ forecasts [93]. However, in many ‘real-life’ applications,
either the true process is not known or no individual forecaster or model has access to the complete information needed
to generate the ‘perfect’ model. This is certainly true of wind power forecasts, where the final value of power output is
the result of complex physical interactions to produce the wind speed seen by the turbine, as well as the performance
of the individual turbine and any imposed control actions.

The simplest method of forecast combination is a linear weighting approach where forecasts are combined as a
simple weighted sum, often with the restriction of non-negative weights that sum to one. This approach was used
for the combination of an SVM and radial basis function NN, where weights were found via forecast correlation with
the actual time series for four different wind speed regimes for each month [94]. While specifying the model weights
according to a correlation measure eliminates the need for estimation of the weights as free parameters, it may not
guarantee the optimal combination.

Xiao [95] used linear weights to combine five different models, with the weights optimised both by minimising
forecast errors (‘traditional” approach) and using a particle swarm optimisation. Including all five individual models in
the final combination consistently gave best results as opposed to dropping some model(s) completely, with the particle
swarm optimised weights outperforming the traditional approach for this case. Zhou [61] found improvement using a
small sliding window of previous forecast errors to adaptively combine forecasts, although only linear ARIMA type
models were considered.
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Nonlinear combination of an ensemble of neural network forecasts was achieved by a genetic programming algo-
rithm [96]. Both lagged power measurements and NWP variables were used as inputs for one hour ahead forecasts, with
feature selection to find the subset of ‘informative’ inputs although the results of this were not reported. Ouyang [97]
takes a slightly different approach, determining significant input variables by Granger causality and building a sepa-
rate univariate model for each of these. A multilayer perceptron was found to be best for combining the univariate
predictions in the second stage of the model, and outperformed multivariate models. Lin [98] proposed a probabilis-
tic forecast combination method, also using a weight coefficient for each model and combining both parametric and
nonparametric forecast distributions. It is based on open data from GEFcom2014 [99]. Deterministic forecasts from
a range of ML models have also been used as inputs for probabilistic combined forecasts [100]. While none of the
individual models showed improvement over persistence for 1 hour ahead forecasts, the final combined model gave a
significant (30%) improvement and beat persistence at all sites tested.

4.5. Probabilistic methods

A quantile loss function with an LSTM network was used to generate interval forecasts [101]. Attention mecha-
nisms for automatic weighting of input features and extracting trends through time appear to improve the sharpness of
the forecasts.

Jiang [102] used separate objective functions to maximise the interval coverage and minimise the interval width of a
forecast power interval independently. This allows the user to choose from a set of pareto-optimal solutions according
to their preferred trade-off between coverage and interval width. A deep learning approach using a convolutional
Neural Network was found to outperform persistence and other shallow networks across seasons, quantile levels and
for a wide range of forecast horizons [103].

A Markov Chain (MC) approach where transition probabilities between discrete power levels are modelled gives
probabilistic forecasts without assuming a distributional shape [104]. A large number of power levels may lead to
transition probabilities of zero in this method simply because they are not observed in the training data; a Bayesian
approach where prior transition probabilities can be specified would mitigate this.

The Weibull distribution is commonly used to model wind speed distributions; Bracale [105] propose a mixture of
two Weibull distributions to allow for bimodal distributions, fitting the mean with an ARIMA model and the remaining
parameters through Bayesian inference. This approach outperformed both persistence and single distribution models
for hour ahead forecasts.

The point forecast accuracy of an LSTM and the good probabilistic reliability of a Gaussian Process regression
model were combined and found to outperform other time series methods both on point forecast accuracy and proba-
bilistic performance [106].

4.6. Turbine-level data and remote sensing

Wind farms comprise multiple, sometimes hundreds, of individual wind turbines, forming a hierarchy which may
be exploited to improve forecast performance [107]. Furthermore, if spread over a sufficiently large area, up-wind
turbines may detect changes in wind speed early enough to inform very short-term forecasts for the farm as a whole.
Similarly, measuring the wind speed up-wind of the wind farm using remote sensing may provide valuable information
for very short-term forecasts.

Jiang [108] proposes use of time series from a neighbouring turbine and selection of forecast inputs via grey corre-
lation analysis to improve individual turbine’s forecasts. Along with an SVM model and cuckoo search for parameter
optimisation, this does appear to improve forecasts relative to persistence, ARIMA and other SVM models. This model
doesn’t take account of the changing relationships between turbines as wind direction changes, for which a dynamic
model may be more suitable.

A spatio-temporal Gaussian Process is proposed to predict turbine- and farm-level power production for 1- to
12-hours ahead [109], improving over non-spatial approaches to a comparable degree as spatio-temporal models on
multiple wind farms. To its credit, this study is based on an open dataset [110]. One month of training data is used to
train models on on a 6-hour rolling basis, which may impact some methods more than others.

Turbine-level forecasting using inputs from similar turbines (found through clustering algorithms) and an LSTM
network showed promise over other ML benchmarks for 90-minutes ahead forecasts [111], although there was no
discussion of how this translates to farm-level forecasts or consideration of hierarchical approaches for this.

Both lidar and radar technologies have been deployed at wind farms to measure the wind resource, though forecast-
ing has not been the primary motivation. Wurth et al. [112] review minute-scale forecasting, with scanning lidar and
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radar identified as promising technologies; while use cases exist they are underdeveloped. Valledcabres [113] use dual
doppler radar observations of up-wind wind speed to improve 5-minute ahead predictions of 1-minute mean power.
Scanning lidar have also shown potential to improve forecasts for minutes-ahead horizons [114] but suffer from data
reliability issues in fog or rainy conditions.

5. Research Methods

While very short-term power forecasting is an evolving area, certain methods are applied more commonly for
different lead times. This is partly due to physical restrictions (for example cloud formation and dissipation and changes
in wind direction limit the predictability of image based methods to long horizons) but also due to practical limitations,
such as the latency in data assimilation, low temporal resolution, and low refresh rate typical of NWP models. However,
higher spatial and temporal resolution NWP products are becoming available with hourly re-fresh rates, as provided by
NOAA'’s High Resolution Rapid Refresh [115] and the UK Met Office’s UKV [116] and MOGREPS systems [117],
for example. Higher resolution and refresh rates are offered by emerging technologies such as Whiffle’s so called
‘“finecasting’ approach and NOAA’s experimental “Warn-on-Forecast’ product [118]. These advances bring the ability
of NWP to model and predict physical processes to ever shorter lead-times where they have not traditionally out-
performed statistical methods based on local observations. The two approaches are complimentary, and state-of-the-
art, site-specific forecasting systems combine both NWP and statistical processing of live site data.

Imaging techniques for minutes-ahead applications have had greater attention in the solar literature, whilst models
including spatio-temporal relationships have focused more on wind power forecasting. Methods producing a forecast
as a probability distribution are becoming more widespread, although there is more focus on probabilistic forecasting
in the wind community. Solar forecasts sometimes only give a single confidence interval which might not have a formal
definition in terms of probability coverage [40, 41]. Probabilistic forecasts are not always evaluated using probabilistic
metrics, or only for one interval rather than the whole distribution [43, 47, 101].

Confidence in the significance of results may be undermined by use of limited case study datasets with a length of
days to weeks rather than a year or more [119]. In particular, results of model evaluation carried out entirely on data
from one season at one site may not generalise to other seasons, weather conditions or other locations. The shorter the
dataset, the smaller the probability the data contains a wide range of weather (cloud or wind) conditions; this increases
the risk of poor performance when forecasting for conditions not included in the training set. A long dataset covering
multiple sites would be expected to allow more robust conclusions on model performance to be drawn. Use of small
datasets is seen in both solar [47, 49, 52] and wind [71, 72, 81, 86, 84, 95, 106, 108, 88] studies.

Papers on novel methods do not always include appropriate benchmarks such as naive models or established best-
in-class methods; we found both solar and wind papers which only compare models to their own variations [40, 41,
44,49, 61,71, 72,73, 78, 102, 104]: this is in line with a survey by Doubleday et al [11], who find that 8 of 42 solar
forecasting papers surveyed did not include a benchmark other than variants of the same model. They recommend
comparison to two benchmarks, one highly reliable but more naive approach and one closer to state-of-the-art. Testing
against benchmarks that are significantly different from the proposed model would allow for a clear comparison with
other methods. Consistent benchmarks across papers and publishing code alongside for reproducibility would not only
strengthen confidence in reported results, but allow easy comparison of state-of-the-art approaches.

We have found it is sometimes unclear how, or if, data has been partitioned to perform out-of-sample evaluation [69,
82,89,74,75,90,94]. A brief clear description of the training and testing sets or cross validation approach used would
be beneficial in these cases.

For wind power forecasting, a proportion of work is based on wind speed, rather than power, forecasts [66, 76, 88]:
while wind speed forecasts may well be more appropriate for some applications, it is worth noting that grid or trading
decisions require power forecasts. The conversion from wind speed to wind power is complex and nonlinear 