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Abstract—Probabilistic forecasts quantify the uncertainty as-
sociated with predictions about the future. They are useful in
decision-making, and essential when the user’s objective is risk
management, or optimisation with asymmetric cost functions.
Probabilistic forecasts are widely utilised in finance and weather
services, and increasingly by the energy industry, to name a
few applications. The R package ProbCast provides a frame-
work for producing probabilistic forecasts using a range of
leading predictive models, plus visualisation, and evaluation of
the resulting forecasts. It supports both parametric and non-
parametric density forecasting, and high-dimensional dependency
modelling based on Gaussian Copulas. ProbCast enables a
simple workflow for common tasks associated with probabilistic
forecasting, making leading methodologies more accessible then
ever before. These features are described and then illustrated
using an example from energy forecasting, and the first public
release of the package itself accompanies this paper.

Index Terms—Probabilistic Forecasting; Software, Uncertainty
Quantification

I. INTRODUCTION

Quantifying the uncertainty associated with predictions is

necessary in many situations, not least in power system

operation. Probabilistic forecasting of electricity demand [1],

renewable energy generation [2], and market prices [3] are all

active areas of research and are increasingly being deployed

in practice [4]. As the field matures, focus is moving towards

more nuanced aspects of forecasting methodology, such as

feature selection and engineering, modelling large-scale de-

pendency structures including hierarchies, and realising value

through innovative end-use. Therefore, it is desirable for

both researchers and practitioners to work within a software

framework that supports quick deployment of established

tools but is flexible enough to incorporate novel elements.

ProbCast is an R package written with this in mind, and its

first public release is presented here. A strong motivation for

producing ProbCast is the lack of an existing framework for

handling non-parametric densities in general, particularly those

specified by multiple quantiles with, optionally, parametric

tail distributions. While developed by energy forecasters, the

potential scope of ProbCast is broad.

Numerous software packages exist for forecasting tasks

ranging from commercial products, which typically automate

the process to a large degree and may include proprietary

methodologies, and packages in scripting languages, which are

typically open-source and provide a common framework for

interacting with a range of statistical models. The R package

forecast [5], [6], for example, provides tools for time series

forecasting. Other R packages, such as scoringRules [7]

and fanplot [8], supplement forecasting packages with

tools for evaluating and visualising probabilistic forecasts.

The Python package RESgen [9], was developed for high

dimensional energy forecasting, similar to ProbCast, but

provides only a single methodology for density forecasting

and covariance modelling, and is not actively maintained.

Similarly the package MEFM, implementing the electricity

demand methodology from [10] provides a wrapper functions

for a single model.

ProbCast provides a modular modelling chain for the

production of probabilistic forecasts supporting a broad range

statistical models for parametric and non-parametric density

forecasting, parametric models for extreme quantiles, and

high-dimensional multi-variate forecasting. Additional func-

tionality for forecast cross-validation, visualisation and evalu-

ation is also provided. Central to ProbCast is the MultiQR

data structure for the results of multiple quantile regression.

Standardising the format of this data allows for non-parametric

predictive distributions to be fully specified when accompanied

by routines for interpolation between quantiles and extrapo-

lation beyond the upper and lower quantiles. It also provides

interfaces between parametric distributions and other function-

ality. Multi-dimensional forecasting is handled in a Gaussian

Copula framework with a range of covariance estimation

techniques. ProbCast is currently maintained and developed

by researchers at the University of Strathclyde where it serves

the dual purpose of accelerating and disseminating research.

This paper presents the first release of ProbCast in

Sections II to VI, from it’s data classes for parametric and

non-parametric density forecasts, to methods (functions) for

fitting predictive models, dependency modelling, visualisation,

and forecast evaluation. In Section VI an example based on the

wind track of the 2014 Global Energy Forecasting Competition

is presented, and the future development of ProbCast is
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discussed in Section VIII.

II. PROBABILISTIC FORECASTING PARADIGM

The first contribution of ProbCast is a common format

for the storage of probabilistic forecasts of multiple continuous

variables without being restricted to parametric distributions.

In the parametric case, each predictive distribution is fully

specified by predictions of the distribution’s parameters, of

which there are typically a small number (per variable in

the multivariate case, plus dependency structure), restricting

the shape of the distribution. A non-parametric predictive

(multivariate) distribution is not restricted in its shape but may

be more complicated to specify, for example via kernel density

estimation or quantile regression. ProbCast introduces a

data class MultiQR for storing the quantiles of a predictive

distribution and methods for visualising and performing fore-

cast evaluation.

Second, ProbCast provides wrapper functions for a range

of powerful predictive modelling techniques with support for

cross-validation using parallel computation. Currently, wrap-

pers for the following methods are included:

• gradient boosted regression trees, using gbm [11]

• generalised additive models (GAM) for location, scale

and shape, using gamlss [12]

• boosted GAMLSS models, using gamboostLSS [13]

• boosted quantile-GAMs, using mboost [14]

• a two-stage model based on linear quantile regression for

the residuals of conventional GAMs based on mgcv [15],

[16]

These approaches may be applied to general supervised learn-

ing problems and time series forecasting.

In any case, the aim is to produce the predictive distribution

D̂t of target variable yt ∼ Dt given explanatory information

Xt, which may include lagged values of yt. In the multivariate

case yt is a vector, and D̂t and Dt are multivatiate distribu-

tions. D̂t may be a parametric distribution, which is discussed

further in Section IV, otherwise D̂t must be constructed some

other way. ProbCast provides methods for constructing D̂t

from multiple quantiles qτ,t τ = τ1, ..., τQ via interpolation

between quantiles and extrapolation beyond the upper and

lower quantiles. Linear and monotonic cubic spline interpo-

lation are supported. The interpolation may be extended to

user-specified boundaries, or alternatively an exponential tail

distribution may be employed. Subscripts t are dropped in the

remained of the paper to simplify notation.

III. MULTIPLE QUANTILE REGRESSION

Multiple quantile regression is a model based approach

to constructing non-parametric conditional distributions. Typ-

ically separate models are fτ (X) are estimated for evenly

spaced probability levels τ = τ1, ..., τQ to predict the con-

ditional quantiles q̂τ of y ∼ D̂ [17]. The functions fτ (X) are

computed by minimising the mean of the Pinball Loss

ρτ (y − q̂τ ) =

{

τ |y − q̂τ | if y ≥ q̂τ

(1− τ)|y − q̂τ | if y < q̂τ
(1)

over some set of training data in a supervised learning frame-

work.

However, estimating a separate model for each quantile

does not guarantee that the sequence of quantiles is non-

decreasing, i.e. q̂τ1 ≤ q̂τ2 ≤ ... ≤ q̂τQ , as required to

consider each quantile a point of a cumulative distribution

function. Empirically, it is sufficient to re-order quantiles if

Q is sufficiently large. ProbCast includes a check for non-

decreasing quantiles and optional re-ordering. An extension

to an ADMM-based estimator for multiple linear quantile

regression has been proposed in [18] to produce multiple

quantile regression that are constrained to be non-decreasing,

but similar facilities are not available for the majority of

learning algorithms.

In addition to direct quantile regression on the target vari-

able y, ProbCast facilitates a two-stage approach whereby

the residuals of a GAM are modelled via linear quantile

regression, as proposed by [15]. The linear quantile regression

may be performed on a user-specified model or using the same

smooth terms as estimated for the GAM with a further option

use the smooth terms from a second GAM fit to the squared

residuals of the first.

IV. SEMI-PARAMETRIC REGRESSION

If the predictive distribution is assumed to be parametric,

y ∼ D̂(θ1, θ2, ...), the forecasting task is to predict the values

of those parameters. Semi-parametric regression provides a

framework for this where each parameter of the predictive

distribution may be a GAM-type linear model of covariates.

Each parameter is given by

gi(θi) = Xiβi +

Ni
∑

n=1

si,n(Xi,n) (2)

where gi(·) is a link function, βi are linear regression

coefficients, and si,n(·) are typically smooth functions, the

second derivative (or ‘wiggliness’) of which are penalised

during model estimation, though other types of learner may

be incorporated.

Semi-parametric regression models are estimated by max-

imising the penalised log-likelihood of the chosen distribution.

ProbCast provides and interface to the gamlss pack-

age, which implements two algorithms for model estimation

with guarantees on maximisation for a given smoothness

penalty [12], and gamboostLSS, which provides a gradient

boosting algorithm for estimating gamlss-type models [13],

[19]. Both support a wide range of parametric distributions,

including censored and inflated varieties which are necessary

when forecasting bounded variables.

While this approach restricts the shape of the predictive

distribution, there are advantages of using this framework if

suited to the specific problem. These include having a smaller

number of regression models to estimate in order to specify

the full distribution, avoiding imprecision introduced by inter-

polating between quantiles, and having predictive distributions

with well defined tails automatically.



V. MULTIVARIATE PROBABILISTIC FORECASTING

For some applications, probabilistic forecasts of multiple

variables may be required, which requires that the inter-

dependency between variables be captured in the forecast.

Typical examples in power systems include spatial dependency

between renewable generation during a given time period,

temporal dependency for a single variable, or a combination

of both. Copulas provide a useful framework for this task

by separating the univariate marginal distributions and the

dependency structure. For continuous predictive marginals

F̂i(·) there exists a unique copula function C(·) that describes

the H-dimensional cumulative distribution [20]

F̂ (y1, y2, ..., yH) = C
(

F̂1(y1), F̂2(y2), ..., F̂H(yH)
)

. (3)

ProbCast has been developed with large scale problems in

mind and therefore currently only supports Gaussian Copulas.

Other bi-variate Copulas and vine structures for higher dimen-

sional dependencies with tail dependency may be added in the

future. The Gaussian copula is described by

C
(

F̂1(y1), F̂2(y2), ..., F̂H(yH)
)

=

ΦΣ

(

Φ−1(F̂1(y1)),Φ
−1(F̂2(y2)), ...,Φ

−1(F̂H(yH))
)

(4)

where Φ−1(·) is the inverse standard normal distribution

function and ΦΣ(·) the H-dimensional normal distribution

function with zero mean and covariance matrix Σ. Therefore,

this covariance matrix specifies the entire dependency structure

and needs to be estimated. Once the marginal distributions and

covariance matrix have been estimated, forecasts are produced

by sampling from the Gaussian copula and transforming

each sample through the standard normal distribution function

and the inverse-marginal distributions. The Gaussian Copula

provides an efficient framework for modelling dependency

structures, but estimating the covariance matrix and sampling

can become difficult in high dimensions.

A range of options have been proposed for estimating Σ
including the empirical covariance calculated on training data,

parametric estimates where some structure is assumed (e.g.

exponential, Cauchy) [21, Chapter 4], and the graphical lasso

for sparse estimation. ProbCast currently supports empirical

covariance and simple parametric structures, but user-defined

alternatives are straight forward to incorporate.

Note that the copula links uniformly distributed marginals

uh = F̂h(yh), which are obtained via the Probability Integral

Transform (PIT). Probcast includes methods for this for

MultiQR data structures and for the parametric regression

modelling techniques discussed in Section IV. Additionally,

visualising and testing the uniformity of the PIT data zh is a

useful tool in forecast evaluation.

VI. FORECAST EVALUATION

The evaluation of probabilistic forecast can be challenging

and subtle, whether diagnosing a model fit or comparing

two entirely different forecasting methods. The principles of

probabilistic forecast evaluation are discussed in [22], notably

highlighting that a density forecast should be as sharp as possi-

ble subject to calibration. Sharpness is analogous to the width

or ‘confidence’ of the predictive distribution, and calibration

(also called reliability) is the property that the proportion

of observations exceeding each predicted probability level

matches that nominal probability.

A range of scores and diagrams are widely used to evaluate

various aspects of forecast performance. ProbCast provides

methods for standard evaluation metrics and visualisations

including the Pinball Loss, reliability diagrams, and PIT

histograms [22], [23]. These methods take a MultiQR data

object and associated realisations to compute and visualise

these scores. A valuable feature not available in other packages

is the ability to easily separate scores by a user-specified

covariate to aid with model diagnostics and more detailed

evaluation. Additionally, confidence intervals may be gener-

ated via bootstrap re-sampling and added to plots, which are

useful when limited volumes of data are available.

Efficient implementations of the Continuous Rank Proba-

bility Score (CRPS), Multivariate Energy Score (MES) [24]

and Variogram Score [25] are available in scoringRules

so not duplicated here.

VII. WIND POWER EXAMPLE

To illustrate the functionality of ProbCast we provide

the following example of wind power forecasting using data

from the Global Energy Forecasting Competition 2014 (GEF-

com2014) [26]. The data and a script implementing this

example are supplied with ProbCast. The data is divided

into a test and training set, two models are fit and then

evaluated. The first is a gradient boosted tree fit using gbm,

inspired by the winning entry from GEFcom2014 [27], and the

second is a GAMLSS model for the inflated beta distribution.

The inflated beta distribution is a mixture between a Bernoulli

distribution with parameter γ and standard beta distribution

beta(y|µ, φ) with weights α and (1−α), respectively [28]. Its

probability density function is written

beinf(y|µ, φ, α, γ) =











α(1− γ) if y = 0

αγ if y = 1

(1− α)beta(y|µ, φ) otherwise

.

(5)

The probability masses α(1−γ) and αγ on boundaries y = 0
and y = 1, corresponding to zero and rated power output,

make this an appealing choice for wind power forecasting.

ProbCast provides an ‘S3 method’ for the plot function

in R to automatically visualise MultiQR objects with a single

function call. An example is provided in Figure 1a.

By default the q50 is not plotted as this can mislead

users who may interpret a deterministic forecast as the most

likely temporal trajectory [29]. A reliability diagram for the

gbm-based model, disaggregated by wind speed prediction,

produced by the reliability function in ProbCast is

illustrated in Figure 2.

Similarly, evaluation of forecast sharpness is provided

through the Pinball Loss and options for plotting and sub-
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(a) Fan plot of the gbm example wind power density forecast.
Plot produced by the S3 method plot.MultQR() provided in
ProbCast.
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(b) A set of 200 temporal trajectories for the forecast issue time
as Figure 1a. Produced using the GAMLSS predictive densities and
empirical covariance structure.

Fig. 1: While density forecast such as those illustrated on the left quantify uncertainty at individual points in time, they do

not provide any information about dependency between time periods. The temporal trajectories on the right do provide this

information but, it is difficult to visualise effectively.
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Fig. 2: Example of reliability diagrams for wind power fore-

casts separated by the NWP forecast of 100m wind speed

[m/s], shown in different colours. Translucent areas illustrate

95% confidence intervals estimated via bootstrap re-sampling.

In this example, the forecasts show a significant bias when the

wind speed is forecast to be low.

setting are provided, similar to the reliability function.

An example visualisation of the Pinball Loss is given on

Figure 3.

Here, we extend the example to show the capabilities of

ProbCast for multivariate forecasting. To model the tempo-
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Fig. 3: Example Pinball Loss diagram for wind power forecasts

separated by the NWP forecast of 100m wind speed [m/s],

shown in different colours. Translucent areas illustrate 95%

confidence intervals estimated via bootstrap re-sampling. In

this example the influence of the above rated region of the

power curve is clear, giving a lower Pinball Loss in the upper

region of the distribution at high wind speeds. Another useful

choice for binning the score is by lead time.



TABLE I: Example multivariate evaluation results for temporal

trajectories using ProbCast and scoringRules averaged

over each cross-validation fold and test data. The marginal

corresponds to the technique used to produce density forecasts.

Marginals Fold ID ES wVS1 wVS.5

gbm

Fold 1 0.5542 0.4514 0.9878
Fold 2 0.5592 0.5020 1.0825
Fold 3 0.5408 0.3988 0.9455
Test 0.5820 0.5518 1.0926

gamlss

Fold 1 0.5821 0.4247 0.9552
Fold 2 0.5946 0.4655 1.0230
Fold 3 0.5541 0.3800 0.9196
Test 0.6406 0.5233 1.0543

ral dependency of forecast errors across the forecast horizon

in a Gaussian Copula framework, a set of Gaussian-distributed

residuals from the forecast are calculated by transforming

training data using the PIT and the inverse standard normal

distribution function, zh,t = Φ−1(F̂h,t(yh,t)) where h and t

are the forecast lead-time and issue time, respectively. These

are then used to estimate the H ×H covariance matrix Σ as

either the empirical covariance or some parametric form.

ProbCast includes functionality for K-fold cross-

validation. When used this returns out-of-sample density fore-

casts, from which the required zh,t variables are generated

and used to estimate the matrix Σk, k = 1, ...,K for each

fold. This ensures that all aspects of the forecasts evaluated

using cross-validation are as representative of out-of-sample

performance as possible.

Once the model Copula and marginals have been estimated,

an arbitrary number N temporal trajectories, or ‘scenario

forecasts’ ỹ
(n)
h,t , h = 1, ..., H, n = 1, ..., N may be produced

by drawing N samples z̃
(n)
h,t from ΦΣ and transforming them

through ỹ
(n)
h,t = F̂−1

h,t (Φ(z̃
(n)
h,t )). An example set of scenario

forecasts is illustrated in Figure 1b.

It is straightforward to evaluate forecasts produced by

ProbCast using the package scoringRules, which pro-

vides a range of efficient implementations of scoring functions.

In particular it provides some closed-form solutions for the

Continuous Rank Probability Score, and scores for multivariate

forecasts. Three common multivariate evaluation measures are

presented in Table I for the temporal trajectories produced

in this example. These are the Energy Score (ES), and two

variants of the weighted p-Variogram Score (wVSp), for each

cross-validation fold and test data. Each copula has marginals

based on either multiple quantile regression (gbm), or the semi-

parametric regression (gamlss). Often, as is the case here, there

is only relatively minor changes in the mean ES score between

models. Therefore, bootstrap sampling can be used to estimate

the sampling variation of the mean score [23]. An example of

this is shown in Figure 4 using a simple block bootstrap, for

two multivariate evaluation scores during testing.

This example highlights the current capabilities of

ProbCast, and as such we exclude necessary elements
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Fig. 4: Boxplots showing the results of block bootstrap sam-

pling of two example multivariate scores from the test data

for models with marginals produced by the two different

methods, gbm and gamlss. The Energy Score (left) shows

clear separation between the two configurations, unlike the

variogram based score (right). This method can also be used to

establish any robust change in evaluation scores for different

dependency types. Note that the ES is sensitive to both the

skill of the marginals and the dependency structure, where as

the VS only evaluates the dependency structure.

of modelling such as feature engineering, selection, hyper-

parameter tuning, etc. for brevity. However, this package

provides the necessary framework for conducting these tasks

in a fast and efficient manner.

VIII. DISCUSSION AND CONCLUSIONS

The utility of probabilistic forecasting is well established but

their production, evaluation, and general manipulation using

scripting languages typically requires several hundred lines of

bespoke code. ProbCast is an R package which provides

a modular framework for uni- and multi-variate probabilistic

forecasting with support for a wide range of statistical leaning

techniques, evaluation and diagnostic tools, and visualisation.

It provides a data structure, MultiQR, for storing tables

of multiple predictive quantiles. It has been developed with

energy applications in mind, for example [30], [31], but the

functionality it provides is more generally applicable.

As well as simplifying the deployment of forecasting

routines, the modular nature of ProbCast supports rapid

development development and testing of novel methodologies.

This paper presents the first public release of ProbCast

but further developments are required in order to provide

a comprehensive toolkit. Planned developments include sup-

port for rolling model updates and adaptive models, hyper-

parameter selection, comparative evaluation (see [23] for ex-

ample), alternative CDF approximation methods, and speci-



fying parametric covariance structures. ProbCast will also

be used to accelerate and disseminate future research of novel

methodologies including estimation of time-varying and high-

dimensional covariance matrices, hierarchical forecasting, and

probabilistic forecast combination.

Anyone can expand ProbCast’s functionality, for example

by writing wrapper functions for new learning algorithms

following the format of those already included. Contributions

from the wider community are welcome, and we hope will be

included in future releases.
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