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Abstract—In this paper we examine potential improvements in
how load and generation forecast uncertainty is captured when
setting reserve levels in power systems with significant renewable
generation penetration and discuss the merit of proposed new
methods in this area. One important difference between methods
is whether reserves are defined based on the marginal distribution
of forecast errors, as calculated from historic data, or whether
the conditional distribution, specific to the time at which reserves
are being scheduled, is used. This paper is a review of published
current practice in markets which are at the leading edge of this
problem, summarizing their experiences, and aligning it with
academic modeling work. We conclude that the ultimate goal

for all markets expected to manage high levels of renewable
generation should be a reserve setting mechanism which utilizes
the best understanding of meteorological uncertainties combined
with traditional models of uncertainty arising from forced out-
ages.

I. INTRODUCTION

The increasing penetration of highly variable renewable

generation poses a number challenges for power transmission

system operators (TSOs), not least of which is the task of

determining the amount of reserve to schedule in order to

maintain a specified level of system security. Loosely, this

means holding enough reserve to restore the balance of gen-

eration and consumption in the event of unplanned deviations

from the forecast system operation state, keeping electrical

parameters within statutory limits, and without having to resort

to any authorized or un-contracted reduction or disconnection

of demand.

In practice, in many markets there are different categories

of reserve, defined to address uncertainties arising in different

time-scales, the different sources of energy that might be avail-

able to manage the impact of imbalance, and the vulnerability

of a particular synchronous area to frequency variation [1, 2].

In principle the arguments and methods discussed in this paper

could be applied to any type of reserve but are most relevant to

balancing services being procured on intra-day and day-ahead

time-scales and operated on sub-hour time-scales to respond

to load and generation forecast errors [3].

Increasing the level of stochastic generation in the system

increases the impact that external, non-controllable variables

(such as instantaneous wind speed) have on the reserve-setting

problem. Defining reserve requirements in this context to meet

a defined level of system security remains an open question.

Decisions made under uncertainty must be informed by prob-

abilistic information in order to correctly quantify the risk

the decision maker is exposed to [4]. Due to the complexity

and difficulty of managing probabilistic information these

decisions are typically informed by heuristic rules based on

past experience, but as the number and size of uncertainties

increases it is likely to be worth employing more sophisticated

approaches in order to achieve cost savings. Additionally,

heuristics may be defined by analysis of past system states

which do not adequately represent the expected states of

that same system under future conditions with a different

generation mix and geographic distribution of generators. For

example, in Great Britain wind generation has historically been

located towards the northern extent of the network, distant

from the main load centers, where the future development

of offshore wind may shift the distribution this generation

towards the south-east of the network, requiring uncertainties

in wind output to be captured for a very different set of

possible network flows [5].

The optimum reserve level is found by balancing the cost

of procuring reserve capacity against the cost of failing to

supply energy in the event of a shortfall. Historically, the two

main sources of uncertainty were significant but well defined:

the possibility of multiple large generators failing has low

probability but high impact if reserves are inadequate, and

load forecast errors are common but usually relatively small.

This allowed reserve levels to be set using simple rules based

on the size of largest generator and/or some fraction of the

total load [6]. Today, the output of variable generation in the

near future is uncertain and must be forecast. Managing power

systems against this new characteristic has been the focus of

much research.

Over the past decade many industry and academic studies

have been carried out to assess the impact of integrating

variable renewable generation into the world’s power systems,

and many have been compared and reviewed as in [2, 7, 8], for

example. A critical finding of recent studies is that operating

reserve requirements need to be more dynamic [8]. In order to

maintain a constant level of risk, TSOs use both analytic meth-

ods and their experience to assess the uncertainty in near-future

load and generation, and schedule reserves accordingly [8].

The methods used to quantify uncertainty varies significantly

between operators, and in this paper we attempt to present

representative examples of the variety of different approaches.Accepted to IEEE PES General Meeting 2016 c© IEEE 2016



In Section II we describe the reserve scheduling problem,

followed in Section III by a discussion of current practice

as documented by several TSOs. In Section IV we discuss

two proposed solutions based on probabilistic forecasts: the

first makes use of density forecast and the second uses

scenario forecasts. Finally we present a discussion and some

conclusions in Section V.

II. PROBLEM DESCRIPTION

Reserves are required to maintain system security and

ultimately the goal is to maintain the supply of electricity to

consumers within appropriate cost constraints in response to

unscheduled deviations in generation and demand. In order

to define an appropriate level of reserves, it is necessary to

identify risk indices that quantify the desired level of system

security. The three most common examples are listed here:

• Loss of Load Probability (LOLP), which is the probabil-

ity that generation will be insufficient to meet demand

during a given period.

• Loss of Load Expectation (LOLE) is defined as the

portion of time, over the long-term, that it is expected

that supply will not meet demand, as used in the capacity

markets recently introduced in Great Britain and France.

• Expected Energy Not Served (EENS) gives a measure of

the total energy not delivered due insufficient supply.

Given a probability density function of load and generation

forecast error (including the chance of plant of interconnector

failure), the level of reserves required can be calculated for a

chosen value of one of these indices.

For any given index, the target value chosen depends on

how risk-averse the TSO is. The European Network of Trans-

mission System Operators for Electricity (ENTSO-E) includes

recommendations in its policy on load-frequency control [1]

for a ‘probabilistic risk management sizing approach’: holding

enough reserve to meet requirements, for example, during

99.9% of hours based on the individual distribution curve of

the power imbalance of the control area in question.

There is also an economic case to be made. Scheduling and

operating reserves comes at some financial cost, and there is an

economic cost associated with disconnecting customers. Often,

the latter is termed the value of lost load (VoLL). It should be

noted that calculating VoLL is problematic as the nature of the

load not supplied can have a large impact on the associated

economic cost [9], and many of the non-financial impacts are

difficult to quantify. For example, VoLL will vary depending

on the time of day and year, and the type of customer, and the

economic cost of failure to supply energy may have significant

knock-on and distributional effects.

However, once a VoLL is defined in some manner, com-

bining it with the LOLP, LOLE or EENS allows the decision

maker to choose a level of reserve that returns an acceptable

level of financial risk. For example, reserves could be sched-

uled up until the point that the marginal cost of increasing

the reserve level exceeds the cost of not delivering energy to

customers multiplied by the LOLP. Another approach would

be to minimize the conditional value at risk (CVaR), which

is the expected total cost of a reserve schedule, including the

cost of lost load.

Whether considering the risk of lost load or economic risk,

having representative probabilistic information as an input is

crucial. As discussed in the next section, uncertainties in load

and generation forecasts are commonly treated independently

and calculated on basis of historic forecast error; however,

these are both weather-dependent quantities and therefore not

independent.

Importantly, the uncertainty associated with a given weather

forecast depends on the how well the present state of the

atmosphere is estimated and the sensitivity of the forecast to

this estimate [10]. This means that the distribution of historic

forecast errors is a measure of ‘average’ uncertainty and is not

representative of uncertainty for specific forecasts. This poses

a problem for decision makers, for example: if conditions are

such that uncertainty is relatively low, present practice may

prescribe more reserve than is necessary and incur associated

additional costs; likewise, if the weather forecast is highly

uncertain present practice may not prescribe sufficient reserves

to meet the desired level of system security. Furthermore, as

the penetration of weather-dependent generation increases, the

impact of this mismatch will become more severe.

A number of academic studies have investigated the impact

of load and generation uncertainty on power system operating

costs using stochastic programming [11–14]; however, they

model specific generation and reserve markets, often cleared

simultaneously which is not the case in many energy mar-

kets. In addition, they do not provide the decision maker

with information about the risk associated with the dispatch

solution. That said, the result that treatment of actual forecast

uncertainty offers a saving over heuristic approaches is still

relevant. What is not known is how much of these savings

can be realized in reality and in different market structures, or

at what level of renewable penetration it becomes economic

to invest in implementing new systems.

III. UNCERTAINTY DEFINED BY HISTORIC FORECAST

ERROR

At the time of writing, a heuristic approach is taken by

many TSOs. It should be noted that these approaches are

meant as decision aids and that reserves scheduled in real

time will vary depending on conditions at that time, including

time of day, market conditions and any special circumstance,

at the operator’s discretion. These examples share a common

assumption that the distribution of forecast errors depends

only on historic forecast performance scaled by the installed

capacity and spatial dispersion of variable generation, not on

the uncertainty associated with specific weather forecasts.

In Texas, where in 2014 10.6% of the demand for electricity

was met by wind power, the Electric Reliability Council

of Texas (ERCOT) determines the reserve requirements for

each hour of the coming month before the 20th day of the

current month. The total amount of available reserve to be

procured a month ahead is a combination of the Regulation

Service Requirement (deployed to maintain target frequency),



a Non-spinning Reserve Service (to replace lost generation

and compensate for load/generation forecast errors, with a

30 minute response time), and a Responsive Reserve Service

(responding to events that cause significant deviation from

system frequency) [15].

The Regulation Service Requirement is derived from the

98.8th percentile of net load (load and wind) and the 98.8th

percentile of reserves deployed for the 30 days prior to the

period of interest and from the same month in the previous

year, with an adjustment for new wind capacity. Enough non-

spinning reserve is then scheduled such that it plus the average

Up Regulation (equivalent to primary response in ENSTO-E

and frequency response in GB) procured meets or exceeds 95%

of the net load uncertainty. Finally, the Responsive Reserve

Service requirement is set based on historic diurnal load and

wind trends.

In Great Britain, where 9.3% for demand for electricity

was met by wind power in 2014, the TSO calculates its

short-term reserve requirements for each half-hour settlement

period four hours ahead of time in order to contract bal-

ancing services which are required to be operational within

that time frame [16, 17]. The final measure of uncertainty

to be catered for is a combination of the Upward Reserve

Error (conceptually the amount of conventional plant failure),

historic demand forecast error and historic wind forecast

error, for the respective four-hour-ahead forecasts. A reserve

level is then chosen such that in a given half-hour there

is sufficient reserve to cater for forecast errors on all but

one day a year, with an adjustment made depending on the

geographic dispersion of operational wind farms. Finally, a

layer of Reserve for Response is added which comprises part-

loaded units to provide frequency response. This approach is

in line with ENTSO-E’s guide lines; similar approaches are

employed in other European TSOs, such as the French TSO,

RTE [18].

IV. FORECASTING UNCERTAINTY

When making a forecast, the goal is to predict the outcome

of some future observation. A probabilistic forecast attempts to

describe the likelihood of all possible outcomes and can take a

number of forms. The two most relevant to this discussion are

density forecasts and scenario forecasts. Both types of forecast

provide information pertaining to uncertainty by describing the

spread of possible outcomes and their relative likelihood.

A density forecast is an estimate of the probability distribu-

tion of the future observation. Both parametric probability dis-

tributions, such as the familiar Normal distribution, and non-

parametric, typically expressed as quantiles, can be used [19].

Density forecasts are popular because they are familiar and

simple to work with, though combining forecasts, of wind and

solar power generation for example, must be done with care

and account for any correlation between variables [20].

A scenario forecast comprises a set of possible futures

outcomes, each with an equal chance of being realized [21].

Scenarios have the advantage of being able capture the tempo-

ral evolution of variables — which is necessary for multi-stage

decision making — and the dependency between different

variables. Each scenario member includes the realization of

multiple variables, e.g. wind and solar generation.

In this section we will review two examples of decision

tools for setting reserve levels, one based on density forecasts

and one based on scenarios.

A. Density Forecast

The work of Matos, Bessa et al. follows a similar risk-

based methodology to that discussed in the previous section

but using wind power density forecasts, rather than historic

error statistics [22, 23]. They produce a decision tool to aid the

day-ahead setting of operating reserves for a given generation

schedule. As inputs, the approach requires probabilistic load

and wind power forecasts in the form of density forecasts,

plus a capacity outage probability table (COPT) and an outage

replacement rate. The output is a risk/reserve curve and a

risk/reserve cost curve which together act as a decision aid

to be combined with the decision maker’s preferences to set

the level of reserve.

This tool is installed and operational at the Portuguese

TSO (REN, Portugal) providing suggested reserve allocations

during day-ahead and intra-day market sessions [23]. In 2014,

approximately 20% of Portugal’s electricity demand was met

by wind power.

The methodology used by Matos, Bessa et al. to calculate

risk from a measure of uncertainty is very similar to that

of the heuristic approaches described in Section III, with the

significant difference being the use of probabilistic forecasts,

rather than historic forecast error, to give a more representative

evaluation of uncertainty. In a case study [22], this approach is

compared to a method using a simple probabilistic wind power

forecast where the density forecast is a normal distribution

with variance estimated from historic point forecast error. It is

noted that the normal distribution is inadequate and resulted

in a higher than acceptable loss of load expectation due to the

mismatch between the modeled uncertainty and the observed

outcomes.

The authors go on to discus how risk/cost based decisions

can be made but depend on the decision maker’s preference

regarding exposure to either higher reserve costs or higher

levels of EENS. In [23] examples are given of days when

deterministic rules fail to recommend sufficient reserve and

provide no indication of the risk the system is exposed to.

The proposed approach captures this risk and recommends

appropriate reserve levels. A drawback of this analysis is the

lack of consideration for differing economic impacts of EENS.

A similar example applied to solar power can be found

in [24]. In principle the methodology can be applied to a

power system with significant penetration of both wind and

solar power however the correlation between wind, solar and

demand would have to be appropriately modeled [20].

B. Scenarios

The approach described in [25] addresses the problem of

capturing the actual uncertainty of wind and load forecasts



with a scenario forecasting approach. Wind power and load

scenario forecasts are produced together to capture the corre-

lation between the two and included a model of plant failure

based on the frequency of historic failures as a proportion load.

A case study in the DK1 area of Nord Pool is used where the

reserve market is cleared before the generation market. This is

important since it rules out many other approaches including

the stochastic programs of [11, 12] which clear generation and

reserves simultaneously, and the approach of [22, 23] which

requires knowledge of the generation schedule in order to form

the COPT.

Two methods of determining a day-ahead reserve schedule

are presented: the first for a chosen value of the LOLP and the

second based on the CVaR. The solution controlled by LOLP

optimizes the reserve schedule to deliver a set level of security,

in terms of reserve adequacy, regardless of cost. The CVaR

approach on the other hand optimizes the schedule in terms

of both risk (in this cases expected LOLP) and associated cost,

similar to [22]. The challenge for the user is to determine the

risk-aversion parameter (which has no physical interpretation)

and the VOLL.

The schedules produced by both approaches are compared

to the actual reserves scheduled by the Danish TSO during four

one-week test periods. The method based on LOLP is shown

to be reliable, with the method able to produce the desired

level of security set by the user, but the resulting schedule is

more expensive than the TSO’s simple schedule. The CVaR

method with a high risk-aversion setting is found to produce a

less expensive schedule with greater savings for higher VOLL.

V. DISCUSSION AND CONCLUSION

We have described a range of techniques from both industry

and academia that aid and inform TSOs when defining reserve

levels under uncertainty due to variable load and generation.

While all the examples we present are probabilistic — they

quantify uncertainty in order to produce risk-based results —

they fall into two main groups: heuristic methods based on

statistics derived from historic point forecast error, and those

that employ probabilistic forecasts of load and generation. This

distinction is important since the uncertainty associated with

weather-dependent forecasts is complex and variable, and not

well represented by historic error statistics.

The heuristic methods examined determine reserve require-

ments based on security criterion such as LOLP that do

not account for the economic impact of lost load; however,

there is significant scope for operator discretion and economic

analysis will certainly be undertaken by TSOs although the

specific methodology is not detailed in publicly available

documentation. The methods that derive reserve levels from

probabilistic forecasts present results using both security and

economic metrics. Economic metrics are required to compute

the cost-optimal reserve schedule, as demonstrated by [25].

The tool discussed in Section IV-A and [22, 23] is “con-

sidered to be very useful by the end user, in particular for

situations with high forecast error,” although the economic

benefit is not quantified. The example discussed in Sec-

tion IV-B and [25] compares the cost of the proposed model’s

reserve schedule to actual schedule used by the TSO during a

test period to evaluate the method’s performance and reports

significant savings although the suitability of the schedule with

respect to network constraints is not considered.

While there are potential advantages in using sophisticated

decision making tools, incorporating them into complex and

risk-averse power system control rooms may not be economic

for many TSOs until renewable penetration exceeds a certain

level. More work is required to determine what this level is and

results will undoubtedly depend on the power system being

studied. At present, it my be more appealing for TSOs to

focus investment on improving point forecast accuracy since

the value in this is easily realized and well studied (see [14],

for example), and does not require adoption of new decision

making procedures.

However, while there is clearly value in improving the way

uncertainty is modeled decision aids based on power balance

alone are limited. Other system constraints are important,

such as zonal balancing, transmission constraints and system

inertia, especially since care must be taken with respect to

the spatial correlation between zones. These related problems

have also received attention from the research community but

are beyond the scope of this review, for example: stochastic

dispatch models have demonstrated economic value in using

probabilistic forecasts over heuristic rules, such as [12]; and

the multi-stage aspect of reserve scheduling has been examined

in [26]; and optimal power flow constrained by the chance of

transmission line ratings being exceeded in [27].

There are also further considerations for TSOs that are hav-

ing to adapt to increasing penetration of renewable generation:

smart grid concepts, increased demand-side management and

electric vehicles, plus developments in the capability of wind,

solar and storage devices offering ancillary services, could all

play a part in mitigating the variability of renewables [28–

30]. These technologies will likely have a profound effect on

the way our power systems are operated, but while the future

is unknown in many respects, one thing we can be sure of

is that the wind and solar resource will remain variable and

uncertain; understanding that uncertainty and how to utilize

this information in decision-making is critical.
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