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Learning objectives
By the end of this course, students should be able to:

• Identify, list, and describe the different types of probabilistic forecast 

• Use a range of metrics and visualizations to evaluate probabilistic forecasts 

• Describe the processes and data required to produce probabilistic wind and solar 
power forecasts, electricity price forecasts, and electric load forecasts 

• List contemporary statistical and machine learning methods used in probabilistic 
forecasting, their characteristics and available software implementations 

• Describe how probabilistic energy forecasting is used in power systems 
operation, control, and market participation
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Motivation 
and principles
Power System Operations



Power System Objectives

• Supply electric power to 
customers

• Reliably 
• Economically

• Consumption and production 
must be balanced continuously
and instantaneously

Adapted from: B. Kirby
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Unit Commitment

• Some thermal units take a long time to start up, so need to tell them a day (or 
more) in advance if they will be on

• Use forecasted load to schedule the generation mix
• Optimization problem, minimize cost of serving expected load, usually MILP
• Results of the optimization are what units are on the next day, and at what 

levels they generate

Scheduling Large Power Plants – Part 1



Unit Commitment

• Constraints to ensure a feasible solution: generator minimum up/down times, 
ramping limits, minimum generation levels, transmission constraints, etc.

• Security constrained unit commitment ensures feasible power flows during (n-
1) contingencies

• Usually co-optimize energy and ancillary services (reserves)

Scheduling Large Power Plants – Part 2



Economic Dispatch

Adjusting the Schedule with New Information

• Closer to the operating hour perform a “true-up” with better 
forecasts

• Can change output levels of units that are on (within ramping 
constraints) but only start up and shut down really fast units

• Also an optimization problem

• LP if no start up shut down

• MILP with fast start units



How do System Operators use Forecasts?

• Long-term forecasts (1 week+)

• Estimates of “typical” generation used
for resource and O&M planning

• Day-ahead unit commitment

• Day-ahead forecast, along with 
uncertainty band, is fed into scheduling 
and market decisions

• Intra-day adjustments

• Meteorologist flags changes to real-
time traders

• Reconfigure peaking plant schedules

Days

Time of Day (hr)



Dispatch Stacks

Determining the Marginal Generator and Costs

Source:  PJM



How do System Operators use Forecasts?

• Hour-ahead scheduling and trading

• Meteorologist provides high/low uncertainty band

• Use revised forecasts to optimize resources, markets, 
transmission; trading with neighbors

• Intra-hour dispatch

• Value of forecast shifts to control room

• Operators move other generators up/down in 
response to fluctuations

• Assess reserves

• Are reserves sufficient to last until next dispatch 
interval?

• Can we handle ramps?

• Are peaking resources needed?

Time of Day (hr)

minutes to 
hours



More Frequent Decisions Reduce Uncertainty

Source: Harnessing Variable Renewables -- A Guide to the Balancing Challenge, International Energy Agency, 2011

While more frequent forecasts provide greater accuracy, they are only 
useful to the system operator up to the timeframe in which actions can 

be taken in response to the forecast.



Probabilistic 
Forecasting Use Cases

What does a user want out of 
forecasts?



Baseline Forecasts
Climatology

Complete-History Persistence Ensemble

20-day Persistence Ensemble

Raw NWP Ensemble

Gaussian Error Distribution

No resolution

Basic diurnal 
resolution

Very sharp, 
unreliable

Intermediate sharpness



Different Users

Different Uses and Needs

• System Operators: 
• Aggregate Forecasts
• Risk of needing additional generation or curtailment

• Plant Owner/Operator
• Plant level forecast
• Additional information with which to bid, or risk of non-

compliance with bids
• Traders

• Generally aggregate forecasts, perhaps individual plant 
forecasts

• More focus on rare events?



Situational 
Awareness

Understanding Uncertainty to 
Inform Actions



What is Situational Awareness?
Providing the Operator with Additional Information for Decision Support

Source: CNET, ISO-NE



Example System

Small Power System – 3 Generators – Point Forecast

• Load: 60 MW

• Wind: Point Forecast: 12 MW, Max Capacity: 120 MW

• Diesel 1: Max Capacity: 50 MW

• Diesel 2: Max Capacity: 10 MW

Should I turn on Diesel 2?



Wind Power Forecast Representation

Same System: Point Forecast at 12 PM = 12 MW

Source: Yuan et al., Irregular Distribution of Wind Power Prediction, 2019

Given this information, should I turn on Diesel 2?

• Wind Probability of 
Exceedance at 12 PM:
• 95%: 2 MW
• 80%: 5 MW
• 60%: 10 MW
• 50%: 12 MW



Wind Power Forecast Representation

Same System Conditions: Point Forecast at 17:00 = 45  MW

Source: Yuan et al., Irregular Distribution of Wind Power Prediction, 2019

Given this information, should I turn on Diesel 2?
• Wind Probability of 

Exceedance at 17:00:
• 99%: 8 MW
• 95%: 18 MW
• 90%: 25 MW
• 80%: 30 MW
• 50%: 45 MW



Wind Power Forecast Representation

Same System Conditions: Point Forecast at 17:00 = 45  MW

Source: Yuan et al., Irregular Distribution of Wind Power Prediction, 2019

Given this information, should I turn on Diesel 2?

• How would your answer 
change given the downramp
predicted at 18:00?
• Forecasting errors are not just in 

magnitude, but often also 
encounter phase errors



Dynamic Reserves

Adjusting to reflect forecasting 
uncertainty



What are Reserves?

Helping the Power System Deal with Uncertainty

Source:  NREL



Contingency Reserves

Timescales

Source:  NREL



Non-Spinning Reserve Determination

Electric Reliability Council of Texas (ERCOT) Solar Example

• Selected scenarios

(multi-time scale)

✓(L12 days, H1 year, R1 hour, U1 year) 

✓(L1 week, H1 week, R1 hour, U1 week)

✓(L1 day, H1 day, R1 hour, U1 day)

✓(L1 hour, H1 hour, R1 hour, U1 hour)
The NSRR determination timeline



Forecasting Errors over Time

Impacts on Reserves?

Step
Deterministic forecasting

Probabilistic 
forecasting

nMAE nRMSE MAPE nPL
2 4.05 5.42 8.69 1.52
3 2.37 3.04 5.04 0.94
4 1.55 1.98 3.37 0.67

Forecasting result evaluation [%]

▪ Forecasting error increases with lead time in the historical data
▪ Forecasting error increases with the lead time in three steps of the developed method

The deterministic net load forecasting error vs. lead time in the 
historical forecasts



Reserve Reductions

More Recent Information Leads to Savings

Method Note Hourly
average

ERCOT The current ERCOT method 2353.87
Step 1 (R2

hour)
Result from step 1 with a 2-hour
resolution

2268.05

Step 1 (R1

hour)
Result from step 1 with a 1-hour
resolution

2210.16

Step 2 Weekly updated reserve 2026.09

Step 3 Hourly updated reserve 1857.32

Step 4 Hourly updated reserve 1165.33

Hourly average NSRR [MW]
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▪ NSRR reduction: 13.93%, 21.10%, 50.62% for three steps
▪ Consistent over different hours and months



Changes in Reserve Requirements

Changes over Time Horizon and Percentiles

Hourly NSRR vs. time horizon of historical forecasts

Hourly NSRR vs. lower percentile bound

▪ NSSR increases with time horizon of historical forecasts and lower percentile bound
▪ NSSR is flexible by adjusting these two parameters



Changes with Increased Solar Shares

▪ The hourly NSRR is reduced by 39.89%, 77.07% based on 1HA forecasts under low and high 
solar penetration

▪ Negative values mean no NSRR is required during these time periods
▪ High penetration of solar power results in lower net load uncertainty
▪ Replace negative values with 0 in the post-processing

NSRR time series under a high solar penetration

Method Note Hourly
average

ERCOT The current ERCOT method 2353.87

1HA Hourly updated reserve under
low solar

1414.75

1HAHS Hourly updated reserve under
high solar

539.82

Hourly average NSRR [MW]



Seasonal and Diurnal Patterns

Hourly non-spinning reserve requirement in each month Hourly non-spinning reserve requirement in each hour 

▪ NSRR with adaptive scheduling indicate seasonal and diurnal patterns
▪ NSSR decreases with high solar penetration 
▪ Consistent in different hours and months



Hydro Forecasting

Extended Range Hydro Inflow 
Forecasting



Quality vs. Value

Extended Range Hydro Inflow Forecasting

Context:
Range of weather forecasts 
extending all of the time
Hydro plant incentivised to 
operate flexibly

Opportunity?
Can be forecast inflow 
beyond one week-ahead?
What is the value?
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Courtesy of Jethro Browell, Robert Graham &R.M. Graham, J. Browell, D. Bertram and C.J. White, "The application of sub-seasonal to seasonal 
(S2S) predictions for hydropower forecasting", Meteorological Applications, 29(1), e2047, 2022, 
doi: 10.1002/MET.2047

https://doi.org/10.1002/MET.2047


Quality vs. Value

Extended Range Hydro Inflow Forecasting

Weather 
Forecast

Inflow & Water 
Level Forecast

Operational 
Decisions



Quality vs. Value

Extended Range Hydro Inflow Forecasting

Weather 
Forecast

Inflow & Water 
Level Forecast

Operational 
Decisions

• Probabilistic forecasts of precipitation and 
temperature

• Produced by Ensemble Numerical Weather Prediction

• Evaluation: Skill score (relative to model climatology)
• Weekly totals 1 to 6 weeks ahead

Source: Bauer, Thorpe and Brunet, “The quiet revolution of numerical weather prediction,” Nature, 2015



Quality vs. Value

Extended Range Hydro Inflow Forecasting

Weather 
Forecast

Inflow & Water 
Level Forecast

Operational 
Decisions

Forecast Mean
and Ensemble 

Members

Actual 
Precipitation



Weather 
Forecast

Inflow & Water 
Level Forecast

Operational 
Decisions

• Probabilistic forecast of inflow at specific location

• Post-processing required: gamlss model with Gamma 
distribution

Evaluation relative to observations: calibration and skill

Quality vs. Value

Extended Range Hydro Inflow Forecasting



Weather 
Forecast

Inflow & Water 
Level Forecast

Operational 
Decisions

Quality vs. Value

Extended Range Hydro Inflow Forecasting

• Probabilistic forecast of inflow at specific 
location

• Post-processing required: gamlss model with 
Gamma distribution

• Evaluation relative to observations: 
calibration and skill



Weather 
Forecast

Inflow & Water 
Level Forecast

Operational 
Decisions

Need to capture how forecast inform decisions, working with end users:

1. Day-to-day: Change generation schedule to manage water level – converting water to energy at peak or 
off-peak price

• Costs associated with changed generation schedule (based on forecast)

• Costs associated with resulting inflow and water level (based on actuals)
2. Large inflow events: Avoid bad situations – water spill, safe limits on water levels and down-stream flow

Quality vs. Value

Extended Range Hydro Inflow Forecasting



Weather 
Forecast

Inflow & Water 
Level Forecast

Operational 
Decisions

Quality vs. Value

Extended Range Hydro Inflow Forecasting

• Compare “value of water” based on using 
climatology vs forecast:

• Stylised model, but indicative numbers
• Significant value!
• Likely that some of this value already realised
• Is value sufficient to justify new product and 

change in practice?



Quality vs. Value

Extended Range Hydro Inflow Forecasting

Weather Model 
Skill

Site-specific 
Post-processing

Business Value

Ev
al

u
at

io
n

Good practice to make sensible modelling 
decisions and maximise potential value.

Engagement with 
users critical for 
meaningful and 

credible evaluation.

Weather 
Forecast

Inflow & Water 
Level Forecast

Operational 
Decisions



Probabilistic Forecasts 
and Unit Commitment

Incorporating Uncertainty Forecasts 
into Power System Operations



Main Methods and Forecasts Used



Robust Unit Commitment

Source: Morales-Espana et al. 2018



Adaptive Approaches



Challenges in Implementation

Why aren’t we using these in power markets already?
• Computational Challenges

• Input data requirements for Energy Management Systems
• Solve times

• Number of Scenarios
• Need ~1000 scenarios for decent representation of extremes
• But then these are reduced for computational reasons, what information 

is lost?
• Market Issues

• What does this do to LMPs?
• How do you compensate for events that do not happen?

• Current underrepresentation of the cost of extreme events
• Reliability vs. Economics



Conclusions

Tools and Industry Practice

• Probabilistic forecasts can provide additional information that can 
aid in integrating renewable energy sources into the power grid

• Probabilistic forecasting is more advanced than power system use 
cases
• Research on how to automate the utilization of the additional information 

provided is needed

• The best forecast is worthless if its not integrated into a decision-
making process



Thank you!


