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Four main topics:

 Deep learning for probabilistic forecasting

 Combining probabilistic forecasts 

 Data sharing for probabilistic forecasting 



Deep learning for 
probabilistic 
forecasting
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Deep learning for probabilistic forecasting
Artificial Neural Network

• Model mimicking the information 
processing of biological brains.

• Network of small processing 
units (neurons) joined to each 
other by weighted connections 
(synapses).
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Deep learning for probabilistic forecasting
Artificial Neural Network

Neuron model                                Activation function

Objective: Find optimal weights  Backprop

hθ
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Deep learning for probabilistic forecasting
Backpropagation

Algorithm for training Neural Networks
1. Forward Pass: Given inputs and current weights, compute outputs 
of the ANN
2. Loss Function: Outputs is compared with actual observations 
using a pre-defined error function (e.g. SSE)
3. Backward Pass: Error values are propagated backwards
4. Weights Update: Gradient Descent algorithm

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error propagation. In Neurocomputing: Foundations of research, pages 673–695. MIT Press, Cambridge, MA, USA, 1988.
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Deep learning for probabilistic forecasting
Towards Modeling Nonlinearities

Any combination of linear operators is itself a 
linear operator. 
This contrasts with nonlinear networks, which 
are able to gain considerable power by building 
up progressively higher level representations of 
data using deep architecture.
ANN are theoretically able to learn any

nonlinear relationship between a dependent
variable and its predictors. 

Need of many historical data !!

CHAPTER 4 A visual proof that neural nets can compute any function http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
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Deep learning for probabilistic forecasting
How to avoid overfitting?

Overfitting is a modelling error that arises when the model is too closely 
adapted to a limited set of data points.
Origins: small training dataset or improper model complexity
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Deep learning for probabilistic forecasting
Regularization techniques

1) Early stopping: divide data into training and validation sets
2) Input noise 
3) Weight noise
Noise reduces the precision with which the weights must be described. 
Simpler networks are preferable because they tend to generalize better.
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Deep learning for probabilistic forecasting
Features Selection

1) Correlation study – Keep inputs with a sufficient degree of 
dependence on the predicted variable

2) Embedded into optimization procedure – Select input 
combination that minimizes error (Feature importance in 
RF and GBRT)

3) Hybridization of both
4) “Random Bar” based method
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Deep learning for probabilistic forecasting
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Deep learning for probabilistic forecasting
Architecture Optimization
1) Architecture: number of hidden layers, of neurons within each layer, etc.
2) Regularization technique and its parameters
3) Optimization algorithm and its parameters

Methodology:
Grid search, random search, sequential learning

Bergstra, J., Bardenet, R., Bengio, Y., and Kegl, B. Algorithms for hyper-parameter optimization. In NIPS’2011.
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Deep learning for probabilistic forecasting
How to Incorporate Context? 
• In the context of time series prediction, temporal dependencies have 

to be adequately taken into account

• Traditionnal ANN intrinsically treats task as spatial

Architecture has to be tailored !

Time Delay Neural Network, NARX model, Recurrent Neural Network, 
Long Short Term Memory, Transformer……
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Deep learning for probabilistic forecasting
Time Delay Neural Network

The output in time t is based on the inputs in times (t-1),(t-2), ..., (t-n).

Optimal window size is task-dependent and requires finding trade-
off between sufficient temporal information while avoiding overfitting

( )( ) f ( ), ( 1),..., ( )uy t u t u t u t n= − −



2

Deep learning for probabilistic forecasting
NARX model
The output in time t is based on the inputs & outputs in times (t-1),(t-2), 
..., (t-n)

Optimal window size is task-dependent and requires finding trade-off 
between sufficient temporal information while avoiding overfitting

( )( ) f ( 1),..., ( ), ( ), ( 1),..., ( )y uy t y t y t n u t u t u t n= − − − −
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Deep learning for probabilistic forecasting
Recurrent Neural Network
With purely feedforward networks, some of the temporal structure in time 

series is ignored.

In recurrent neural networks (RNN) there may be connections between the 

neurons in a layer

The principle is to preserve the sequential information through the dynamic 

induced in the network’s hidden state 
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Deep learning for probabilistic forecasting
Recurrent Neural Network

RNN = Neural Networks with feedback loops. 
RNN are harder to train due to higher complexity  Backpropagation Through Time

Paul J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):1550–1560, 1990

Vanishing Gradient Problem: back-propagated errors during training either fades 
or blows up over time depending on the neurons activation function. 
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Deep learning for probabilistic forecasting
Long Short Term Memory
The LSTM network controls the flow of information through the hidden layer
using gating units
Input Gate = write
Forget Gate = reset
Output Gate = read

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–1780, 1997.

RNN process inputs in temporal order and 
ignore information contained in future context 
(causality violation?)
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Deep learning for probabilistic forecasting
Bidirectional RNN

Bidirectional RNNs exploit past and future context by processing the 
data in both directions with two separate hidden layers.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45:2673–2681.
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Deep learning for probabilistic forecasting

Other DNN models:
 Transformer
 Convolutional neural networks
 Auto-encoder
 Auto Machine Learning?
 ……
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Deep learning for probabilistic forecasting
Probabilistic forecasting methods
Probabilistic forecasts can be in the form of quantiles, intervals, or density function.

• Supervised learning:

model parameters

• Deterministic regression • Quantile regression



2

Deep learning for probabilistic forecasting
Generative neural networks

Dependencies across periods

Generating scenarios is an effective way to capture such dependencies!
Renewable energy scenarious generation?
Long-term uncertainties?
Our work focuses on the short-term load scecarios generation

Traditional PLF can only capture 
the probability distribution of the 
load individually in each period and 
can not integrate dependencies 
among different periods.
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Deep learning for probabilistic forecasting
Generative neural networks

From the perspective of forecasting, the electrical load contains two parts:
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Deep learning for probabilistic forecasting
Generative neural networks



2

Deep learning for probabilistic forecasting
Generative neural networks
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Deep learning for probabilistic forecasting
Generative neural networks
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Deep learning for probabilistic forecasting
Generative neural networks
Case Studies: Performance w.r.t Uncertainty
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Deep learning for probabilistic forecasting
Generative neural networks

 The scenarios generated by 
CWGAN-GP model are more 
concentrated compared with those 
by QGBRT and QRF.

 Such results suggest that it is hard 
for the CWGAN-GP model to 
generate extreme scenarios

Case Studies: Investigation on Extreme Quantiles
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Deep learning for probabilistic forecasting
Explainable machine learning
Providing insights into inner decision-making processes

Black-box fashion model

Interpretable fashion model

output

output

ML 
results

ML 
results

input

input

Data
set

Data
set
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Deep learning for probabilistic forecasting
Explainable machine learning
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Deep learning for probabilistic forecasting
Explainable machine learning
Interpretable probabilistic forecasting of  real-time electricity prices using a Transformer-
based model
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Deep learning for probabilistic forecasting
Explainable machine learning

Transformer
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Deep learning for probabilistic forecasting
Explainable machine learning

1. Variable selection 2. Transformer-specific attention layer
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Deep learning for probabilistic forecasting
Explainable machine learning

• Averaged temporal attention• Averaged input importance

Test set:  the year 2019, which is approximatively 35,000 novel (unseen) input conditions.
Global temporal input feature importance
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Deep learning for probabilistic forecasting
Explainable machine learning
Case-specific temporal input feature importance
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Deep learning for probabilistic forecasting
Explainable machine learning

Enriching the neural network architecture with interpretable layers does not 
hinder the prediction performance, while being beneficial for:
• the designer, who can check that the model does not exploit artifacts in 

the data,
• the end-user, who will be better equipped for making a decision

Some perspectives:
• Extensive benchmark analysis investigating both post-hoc and inherent 

interpretable methods.

• Developing natural language interpretations for leveraging intelligibility 
for non-expert users.
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Deep learning for probabilistic forecasting
Summary：
 Pro and cons of different networks;

 Physical knowledge embedding;

 Explainable/Interpreterable networks;

 Do we really need DEEP networks???

Elsayed S, Thyssens D, Rashed A, et al. Do we really need deep learning models for time series forecasting?[J]. arXiv preprint arXiv:2101.02118, 2021.



Combining 
probabilistic 
forecasts
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Combining probabilistic forecasts

In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better 
predictive performance than could be obtained from any of the constituent learning algorithms alone [1].

Western Phrase: Two heads are better than one;

Chinese Saying: Three vice-generals are equal to one Zhuge Liang

[1] https://en.wikipedia.org/wiki/Ensemble_learning

 Which method is the best?
 Is it possible to combine these 

methods?

Ensemble Learning
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Combining probabilistic forecasts
Problem Formulation

s.t.

T N

N

L ω F , y min TL =
ωn

n n,t t 
t=1  n=1 

ωn ≥ 0

∑ ∑

∑ωn =1,

Loss function: MAPE, RMSE, etc.
Combined forecast

Real load

n=1

Summation and non-negative constraints

Determine 
the weights
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Combining probabilistic forecasts
Ensemble Learning for probabilistic forecasting
Various ensemble methods have been studied to combine multiple point forecasts. 
However, combining probabilistic load forecasts is a rarely touched area.

Combine point forecasts Combine probabilistic forecasts

One dimension High dimension

RMSE, MAPE Reliability, sharpness, calibration

Analytical solution ???

Contributions of our work:
 New problem: Extend the ensemble method to the PLF area;
 Elegant formulation: Formulate the combining problem into an LP or QP model.
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Combining probabilistic forecasts
Problem Formulation

1)How to generate multiple 
PLF models?

2)Among the N forecasting 
models, how many and 
which methods should be 
selected for the final 
ensemble formation 
process?

3) How much weight should be given to each method for the optimal combination?
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Combining probabilistic forecasts
Problem Formulation

s.t.

T N

N

L ω F , y min TL =
ωn

n n,t t 
t=1  n=1 

ωn ≥ 0

∑ ∑

∑ωn =1,

Loss function
Combined forecast

Real load

n=1

Summation and non-negative constraints

Determine 
the weights

A deep investigation of the loss function is the key to 
formulate and solve the optimization problem.
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Combining probabilistic forecasts
Problem Formulation

Pinball loss Continuous ranked probability score (CRPS)

( ) ( ) ( )( )2t t t tCRPS F , y = dz
∞

−∞
F z −1 z − y∫

8

Pinball loss and CRPS assess the calibration and sharpness simultaneously, thus balancing 
the statistical consistency between the distributional forecasts and the observations and the 
concentration of the predictive distributions

( )t ,q t

t ,q t t ,q t

PL ŷ
− ŷt ,q )q ŷt ,q ≤ yt

(yt
, y = 

ŷ − y )(1− q) ŷ > y(
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Combining probabilistic forecasts
Combining quantile forecasts

t t ,q t ,q tŷ ≤ y(y − ŷ )q
PL(ŷt ,q , yt )= 

(ŷt ,q − yt )(1− q) ŷt ,q > yt

q,t n,q n,q,t

N

ŷ ≈∑ω ŷ
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Combining probabilistic forecasts
Combining quantile forecasts
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Combining probabilistic forecasts
Combining quantile forecasts
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Combining probabilistic forecasts
Combining quantile forecasts

Models that are selected for different quantiles for total load (SYS).
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Combining probabilistic forecasts
Combining quantile forecasts

Zones
Models SYS CT NH ME RI VT SEMASS WCMASS NEMASS

#1 0.102 0.144 0.231 0.015 0.001 0.355 0 0 0.196
#2 0 0 0 0.082 0.074 0.146 0.071 0 0
#3 0 0 0.031 0 0 0.079 0 0.196 0
#4 0.068 0 0.089 0.349 0 0 0.038 0 0
#5 0.134 0 0 0 0.272 0 0.199 0.318 0.199
#6 0 0 0.283 0.231 0.226 0.096 0 0 0.136
#7 0.218 0 0.058 0.058 0 0.082 0.166 0.218 0.049
#8 0 0.129 0.308 0.079 0.197 0 0.173 0.076 0.087
#9 0.333 0.341 0 0.185 0.021 0.243 0.290 0.192 0.333

#10 0 0 0 0 0 0 0 0 0
#11 0.145 0.267 0 0 0 0 0 0 0
#12 0 0 0 0 0.210 0 0 0 0
#13 0 0.119 0 0 0 0 0.062 0 0

Models that are selected for the 90-th quantile for different zones.
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Combining probabilistic forecasts
Combining density forecasts

( ( ) ( ))2t t t tCRPS(F , y )= dz
∞

F z −1 z − y∫−∞

The applications of the CRPS have been hampered by a lack of readily computable 
solutions to the integral:

2t tCRPS(F , y )=E Y − y − 1 E Y −Y ′

This drawback is overcome by [1]:

L. Baringhaus and C. Franz, “On a new multivariate two-sample test,” Journal of Multivariate Analysis, vol. 88, no. 1, pp. 190–206, 2004.

Let’s consider a simple case: Gaussian Mixture Distribution
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Combining probabilistic forecasts
Combining density forecasts
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Combining probabilistic forecasts
Combining density forecasts
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Combining probabilistic forecasts
Combining density forecasts
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Combining probabilistic forecasts
Combining density forecasts

Thus, we have:
N N N

i=1 j=1 n=1

CRPS(F , y) =∑∑αi , jωiω j +∑βnωn

2

2

1
2

i j i
i , j

2
i

2
j 2

i j
2
i

2
j

σ
2(σ
(µ − µ ) µ − µ (µi  − µ j )α = +σ exp(− )− j [2Φ( )−1]

+σ ) σ +σ

where

2π
2 n

n n n2
n nπ 2σ σ

(µ − y)2 (µ − y)β = σ exp(− ) + (µ − y)[2Φ( n ) −1]

Finally, we have: min ωT Qω+ cTω
ω

s.t. 1Tω =1 ω ≥ 0
QP problem!
Is this convex?
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Combining probabilistic forecasts
Combining density forecasts PDFs of predictions of four typical days given 

by the base models and their combination

CRPS of the Best Individual Model and Combined Models

Performances of combined models
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Combining probabilistic forecasts
Combining density forecasts

Relative CRPS improvements of 
the three combination methods

Relative MAPE improvements of 
the three combination methods



2

Combining probabilistic forecasts
Combining density forecasts

Weights of the base models in the MAPE-guided model

Weights of the base models in the CRPS-guided model
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Combining probabilistic forecasts
Quantile Regression Averaging
Quantile Regression Averaging (QRA) is a forecast combination approach to the computation 
of prediction intervals. It involves applying quantile regression to the point forecasts of a 
small number of individual forecasting models or experts. 

Nowotarski, Jakub; Weron, Rafał (2015). "Computing electricity spot price prediction intervals using quantile regression and forecast 
averaging". Computational Statistics. 30 (3): 791–803.

1. Generate individual point forecasts;

2. Quantile regression;

3. Final forecasts.
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Combining probabilistic forecasts
Generate individual point forecasts 

B. Liu, J. Nowotarski, T. Hong and R. Weron, "Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts," IEEE Transactions on 
Smart Grid, vol. 8, no. 2, pp. 730-737, March 2017.

Sister recency effect load forecasting models:

where:

By tuning the length of the training 
dataset and the partition of the 
training and validation datasets for 
model selection, we can obtain 
different “average-lag” (or d-lag) 
pairs, leading to different sister 
models.
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Combining probabilistic forecasts
Performance on GEFCom2014

B. Liu, J. Nowotarski, T. Hong and R. Weron, "Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts," IEEE Transactions on 
Smart Grid, vol. 8, no. 2, pp. 730-737, March 2017.
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Combining probabilistic forecasts
Generate individual point forecasts 

Load profile of one consumer

Clustering

Forecasting

Aggregation

If there are different 
partitions of consumers, 
we can obtain different 
bus load forecasts. 

Different partitions

Ensemble

Different forecasts

Combined model:
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Combining probabilistic forecasts
Quantile Passive Aggressive Regression

General Formula

L2-distance :

𝜀𝜀-insensitive
quantile loss : 

Solving KKT conditions: 

𝜀𝜀 1-𝜀𝜀

𝑞𝑞-1
𝑞𝑞
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Combining probabilistic forecasts
Performance on Irish Load Data

Errors on test set after online learning

*QSGD: Quantile Stochastic Gradient Descent
*QPAR: Quantile Passive Aggressive Regression
*QNN: Quantile Neural Network

Errors on test set after batch learning

 All ensembles outperform the benchmarks after online learning except QNN

 The proposed method has the highest accuracy regarding pinball loss and winkler score

 A substantial performance improvement can be achieved by ensembles incorporating online learning.

*Window OPT: window-based optimization
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Combining probabilistic forecasts
Quantile Regression Averaging

How about improvement on quantile regression? 
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Combining probabilistic forecasts
Summary：
 Procedure for combining probabilistic forecasts;

 Selection of individual forecasts with diversity;

 Combining quantile/density/sister forecasts;

 Data split is very important: train-validation-combine-test sets.



Data Sharing 
for probabilistic 
forecasting



Data Sharing for probabilistic forecasting
Why we need to share data?

Mohri M, Muñoz Medina A. New analysis and algorithm for learning with drifting distributions[C]//International Conference on Algorithmic Learning Theory. Springer, 
Berlin, Heidelberg, 2012: 124-138.

Reducing overfitting risk Integrating more information



Data Sharing for probabilistic forecasting
Privacy Issues in Forecasting



Data Sharing for probabilistic forecasting
Privacy Issues in Forecasting

Traditional ML-based forecasting algorithms assume that private data can be freely 
accessed from a centralized location.

Such centralized scheme brings privacy 

concerns and becomes impracticable for 

mainly two concrete reason:

 Legislation for privacy protecting

 Commercial confidentiality of data in 

competitive environment.



Data Sharing for probabilistic forecasting
Privacy Issues in Forecasting
Legislation for Privacy Protecting

 UK launched two policies in 2018, Smart Meter Bill and The Data Protection Act, respectively authorizing half-
hourly electricity consumption data collection and implementing General Data Protection Regulation (GDPR) to 
utilize consumers’ data and protect data privacy

 Canada implemented the Personal Information Protection and Electronic Documents Act (PIPEDA) in 2019, stating 
the main purpose that when smart meter data is gathered, used, or revealed, the individual's consent is required, 
and personal information can only be used for the stated specific purposes.

 To address privacy concerns with smart grid technology, the Office of Electricity Delivery and Energy Reliability and 
the Federal Smart Grid Task Force has published a Voluntary Code of Conduct (VCC) for utilities and third parties in 
the United States

 Data Security Law of the Peoples Republic of China was passed in 2021, which strictly regularizes data collection, 
storage, use, processing, transport, provision, and disclosure.

 ……



Data Sharing for probabilistic forecasting
Privacy Issues in Forecasting
Commercial Confidentiality of Data

In a open market, a competitive advantage can be gained through data analysis and 
personalized customer service; therefore, utilities may be hesitant to share their data in this 
circumstance.



Data Sharing for probabilistic forecasting
Privacy Issues in Forecasting
Problems & Solutions

How can high-performance forecasting be carried out in 
scenarios where data privacy is crucial?

 Privacy-preserving techniques
 Collaborative forecasting 
 Federated forecasting
 ……



Data Sharing for probabilistic forecasting
Privacy-Preserving Techniques

There is an inherent trade-off 
between the performance of the 
prediction model and the privacy 
of the local data.



Data Sharing for probabilistic forecasting
Collaborative Forecasting
Definition & Goal

Because of the spatio-temporal relationships in time series data, collaboration among several 
renewable energy power plant owners helps increase forecast skill.

Instead of sharing raw data, the model fitting problem is tackled in a distributed manner with 
collaborative forecasting, which observes following principles:
 Improve forecast skill as compared to a scenario without collaboration
 Protect data privacy
 Consider synchronous and asynchronous communication between agents



Data Sharing for probabilistic forecasting
Collaborative Forecasting
Schemes
Two collaborative schemes are possible: centralized communication with a central node (central hub) and 

peer-to-peer communication (P2P).

Central hub scheme: • The scope of the calculations performed by the agents in the central hub model is restricted by 

their local data, only statistics data is transferred to the central node (such as average values or 

local data multiplied by locally determined coefficients). 

• The central node combines these local estimators and coordinates the separate optimization 

processes to solve the main optimization problem. 

• A transmission/distribution system operator (TSO/DSO) or a forecasting service provider can 

serve as the central node. The TSO or DSO can operate a platform that encourages collaboration 

amongst competitive RES power units to increase forecasting accuracy and lower system 

balancing costs.



Data Sharing for probabilistic forecasting
Collaborative Forecasting

P2P scheme: • In the P2P model, the agents each compute their estimators locally but share 

their results with their peers, implying that each agent is both an agent and a 

central node. 

• While P2P is more resilient (i.e., there are fewer points of failure), it is usually 

difficult to make it as cost-effective as the central hub model.

• The peer-to-peer paradigm is appropriate for data owners who do not wish to 

rely (or trust) on a neutral third party.

• P2P forecasting between prosumers or RES power plants could be potential 

business models, as could smart cities, which are characterized by a growing 

number of sensors and gadgets put at homes, buildings, and transit networks.



Data Sharing for probabilistic forecasting
Collaborative Forecasting

Example 1
Privacy-preserving LASSO-VAR

Goncalves C, Bessa R J, Pinson P. Privacy-preserving distributed learning for renewable energy forecasting[J]. IEEE Transactions on Sustainable Energy, 
2021, 12(3): 1777-1787.



Data Sharing for probabilistic forecasting
Federated Forecasting
Privacy-Preserving Probabilistic Voltage Forecasting



Data Sharing for probabilistic forecasting
Federated Forecasting

Privacy-Preserving Probabilistic Voltage Forecasting



Data Sharing for probabilistic forecasting
Federated Forecasting

Privacy-Preserving Probabilistic Voltage Forecasting



Data Sharing for probabilistic forecasting
Federated Forecasting



Data Sharing for probabilistic forecasting
Federated Forecasting

Trade-off between privacy and performance



Data Sharing for probabilistic forecasting
Federated Forecasting



Data Sharing for probabilistic forecasting
Federated Forecasting
Personalized federated individual load forecasting



Data Sharing for probabilistic forecasting
Federated Forecasting
Personalized federated individual load forecasting

Changes of RMSE over client 1443 on training set.

Performance (RMSE) of personalized model against local model.



Data Sharing for probabilistic forecasting
Federated Forecasting
Personalized federated individual load forecasting

Performance improvement with different resolutions.



Data Sharing for probabilistic forecasting
Data Pricing in Forecasting
An incentive to accelerate data sharing

Accuracy 
improvement

Privacy 
concerns

Data sharing

pro

con

Data pricing and trading



Data Sharing for probabilistic forecasting
Data Pricing in Forecasting
One-staged Pricing

One of the most common pricing strategy is pricing data based on its 
contribution on forecasting tasks. Thus, the definition of contribution tend to 
be evidently model-related:

e.g.
Reduction on loss function[1]
Improvement on forecasting accuracy
……

It can be called One-staged pricing due to pricing DIRECTLY based on the 
performance of additional data on the forecasting model.

Extra 
data

Model 
progress

[1] Pinson P, Han L, Kazempour J. Regression markets and application to energy forecasting[J]. arXiv preprint arXiv:2110.03633, 2021.



Data Sharing for probabilistic forecasting
Data Pricing in Forecasting

Beyond modelling directly based on regression models, pricing strategy can be two-staged, 
i.e. modelling the FURTHER revenue.

e.g.
Reduction on imbalance costs.[1]
Decrease on operational costs.[2]
……

Two-staged pricing tend to combine the techniques of forecasting and optimization, with 
respect to the knowledge of ML and economics.

[1]
[1]C. Gonçalves, P. Pinson, and R. J. Bessa, “Towards Data Markets in Renewable Energy Forecasting,” IEEE Transactions on Sustainable Energy, 
vol. 12, no. 1, pp. 533–542, Jan. 2021, doi: 10.1109/TSTE.2020.3009615.
[2]M. Yu et al., “Pricing Information in Smart Grids: A Quality-Based Data Valuation Paradigm,” IEEE Transactions on Smart Grid, Apr. 2022.

Extra 
data

Model 
progress

Lower 
costs

Two-staged Pricing

https://doi.org/10.1109/TSTE.2020.3009615


Data Sharing for probabilistic forecasting
Data Pricing in Forecasting

• RES agents’ profit in energy market:

where

• RES agents’ profit in data market:

[1]C. Gonçalves, P. Pinson, and R. J. Bessa, “Towards Data Markets in Renewable Energy Forecasting,” IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 533–542, Jan. 2021.

Extra 
data

Model 
progress

Lower 
costs

Minimize



Data Pricing in Forecasting
Fairly allocation: Shapley Value

𝜙𝜙𝑖𝑖 𝑣𝑣 = �
𝑆𝑆⊆𝑁𝑁\{𝑖𝑖}

|𝑆𝑆|! 𝑁𝑁 − 𝑆𝑆 − 1 !
|𝑁𝑁|!

[𝑣𝑣 𝑆𝑆 ∪ {𝑖𝑖} − 𝑣𝑣(𝑆𝑆)]

In the context of forecasting, we can dim the total improvement on the 
forecasting task as the GOAL of the cooperative game and allocate the 
data buyers’ payment among data sellers according to their marginal 
contribution.

Data Sharing for probabilistic forecasting



Hierarchical probabilistic forecasting
Data Sharing for probabilistic forecasting

Example of a hierarchical time series .

Taieb S B, Taylor J W, Hyndman R J. Coherent probabilistic forecasts for hierarchical time series[C]//International Conference on Machine Learning. PMLR, 2017: 3348-3357.

1. Bottom-Up Probabilistic Forecasting

2. Mean Forecast Combination and Reconciliation 



Data Sharing for probabilistic forecasting
Summary：
 Integrating various data;

 Protect privacy: encryption, DP, etc.;

 Federated learning: vertical and horizontal;

 Valuation/contribution of data.
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