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Four main topics:

» Deep learning for probabilistic forecasting

» Combining probabilistic forecasts

» Data sharing for probabilistic forecasting
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Artificial Neural Network

Output Layer

* Model mimicking the information
processing of biological brains.

* Network of small processing
units (neurons) joined to each
other by weighted connections
(synapses).
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Artificial Neural Network

Neuron model Activation function g,
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Backpropagation

Algorithm for training Neural Networks

1. Forward Pass: Given inputs and current weights, compute outputs
of the ANN

2. Loss Function: Outputs is compared with actual observations
using a pre-defined error function (e.g. SSE)

3. Backward Pass: Error values are propagated backwards
4. Weights Update: Gradient Descent algorithm

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations by error propagation. In Neurocomputing: Foundations of research, pages 673-695. MIT Press, Cambridge, MA, USA, 1988
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Towards Modeling Nonlinearities

Input (x) versus Output (y)

Any combination of linear operators is itself a
linear operator.

This contrasts with nonlinear networks, which ~ _
are able to gain considerable power by building £ e
up progressively higher level representations of ¢
data using deep architecture.

=>»ANN are theoretically able to learn any
nonlinear relationship between a dependent N
variable and its predictors. 0w o

=>»Need of many historical data !! e

2000 A

Output V

CHAPTER 4 A visual proof that neural nets can compute any function http://neuralnetworksanddeeplearning.com/chap4.html
LSS
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@;Es < IEEE

Deep learning for probabilistic forecastim

How to avoid overfitting?

Overfitting is a modelling error that arises when the model is too closely
adapted to a limited set of data points.

Origins: small training dataset or improper model complexity

50 N \ T T T T 50 50

50 | Y 1 -50 - -50 |
* measured data \ * measured data * measured data
----- actual model '\‘ -----actual model -----actual model
fitted model (degree one) ' — fitted model (degree three) — fitted model (degree five)
_100 L 1 1 1 1 ‘l '100 L L L 1 L ‘4 _100
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Regularization techniques

1) Early stopping: divide data into training and validation sets

2) Input noise

3) Weight noise

Noise reduces the precision with which the weights must be described.
Simpler networks are preferable because they tend to generalize better.
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Features Selection

1) Correlation study — Keep inputs with a sufficient degree of
dependence on the predicted variable

2) Embedded into optimization procedure — Select input

combination that minimizes error (Feature importance in
RF and GBRT)

3) Hybridization of both
4) “Random Bar” based method
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Damien Benveniste, PhD « 2nd
Machine Learning Tech Lead at Meta (Facebook) + Follow
2d-®

This is a technique | like to perform a quick FEATURE SELECTION for Machine
Learning applications. | tend to call it the "Random Bar" method! Let's assume you

have a feature set X and a target Y. Let's create a random vector V (for example . A Quick Feature Selection Method

np.random.normal(size=(1, 100))) and append that vector as a new feature to X:

=X V] _ |

!
X' is just the original feature set with additionally the new random feature. Keep in Random : y , useful
mind that this new feature cannot possibly help to predict the target Y since it is Features T | w J

Features

random! Now, take that data (X', Y) and train a Supervised Learning algorithm 0.23 ' > |
with a Feature Importance measure that is relevant for you application. Intuitively, xn Al X1 1 - |
the mean en.tropy ga?n F_)er split of tree based a!gorithms (Random Forest,. . i _— o -0.76 - Vi @ ED 1 The Random Festure

Xghoost, ...) is a convincing measure of feature importance to me. The statistical

: . . : 0.04
fluctuation of the.data is such that even the random feature \.u_\nl.l be fjt.tr.lbuted a X 18 X2 X 33 Y3 useless
non-zero feature importance by the algorithm, but we know it is artificial. Any \ SLIPBWISBd
. . Features
feature with a lower feature importance than the random feature has to be useless Learning E
to predict the target and the features with a higher feature importance are at least Algorftl'tm >
better than random noise at predicting the target. Feature

This is especially useful if you have thousands of features and you want to weed
out quickly the ones that won't have any impact in the learning process. This is
also a method that can be used for highly non-linear data as opposed to LASSO
(for example) that tends to only understand linear relationships in the data. The
random feature is a "Random Bar" because this is the minimum bar a feature
needs to beat to be a part of the potentially useful features set. Now it doesn't
mean there are not additional features that could be beneficial to further remove
to optimize your model. Do you know if this method has a more jargon-y name?
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Architecture Optimization

1) Architecture: number of hidden layers, of neurons within each layer, etc.
2) Regularization technique and its parameters
3) Optimization algorithm and its parameters

Methodology:
Grid search, random search, sequential learning
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How to Incorporate Context?

* |n the context of time series prediction, temporal dependencies have
to be adequately taken into account

« Traditionnal ANN intrinsically treats task as spatial

=» Architecture has to be tailored !

Time Delay Neural Network, NARX model, Recurrent Neural Network,
Long Short Term Memory, Transformer......
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Time Delay Neural Network

The output in time t is based on the inputs in times (t-1),(t-2), ..., (t-n).

y(t) = f(u(t),u(t —1),...,u(t— nu))

Optimal window size is task-dependent and requires finding trade-

off between sufficient temporal information while avoiding overfitting
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NARX model

The output in time t is based on the inputs & outputs in times (t-1),(t-2),
..., (t-n)

y(6) = £ (p(t=1),cc p(t =1, ) u(@),u(t =1),...,u(t —n,))

Optimal window size is task-dependent and requires finding trade-off
between sufficient temporal information while avoiding overfitting
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Recurrent Neural Network

With purely feedforward networks, some of the temporal structure in time
series is ignored.

In recurrent neural networks (RNN) there may be connections between the
neurons in a layer

The principle is to preserve the sequential information through the dynamic

induced in the network’s hidden state
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Recurrent Neural Network

RNN = Neural Networks with feedback loops.
RNN are harder to train due to higher complexity = Backpropagation Through Time

® & ®)
C ] 1 1 I
A = — —> — A

A A A
6 b & b
Vanishing Gradient Problem: back-propagated errors during training either fades
or blows up over time depending on the neurons activation function.

Paul J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):1550-1560, 1990
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Long Short Term Memory

The LSTM network controls the flow of information through the hidden layer
using gating units

Input Gate = write
Forget Gate = reset
Output Gate = read

RNN process inputs in temporal order and
ignore information contained in future context
(causality violation?)

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735-1780, 1997.
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Bidirectional RNN

Bidirectional RNNs exploit past and future context by processing the
data in both directions with two separate hidden layers.

Outputs ce Yp1 Ui Yirl - -

Backward Layer 4— e @
Forward Layer ‘ ‘ ‘

Inputs cee T x4
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Other DNN models:

» Transformer

» Convolutional neural networks
» Auto-encoder

» Auto Machine Learning?
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Probabilistic forecasting methods
Probabilistic forecasts can be in the form of quantiles, intervals, or density function.
Category Methods i
Parametric method Auto-regression model 3
Maximum likelihood
Bayesian approach / Tme / -
Nonparametric method Quantile regression deterministic part: uncertain part:
Bootstrapping method i = f(Xe) € = Yt — Yt
Lower upper bound estimate
Gradient boosting * Deterministic regression * Quantile regression
Kernel density estimation
Analog ensemble L4
* Supervised learning: ©* = argmin ) ., L(V;, fe (X))
© N ! - \IT QT,q)
model parameters | N —
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Generative neural networks
l | = 0% imerva Traditional PLF can only capture
—20% inerva the probability distribution of the
- a4 load individually in each period and
gt [} "1\ / | can not integrate dependencies
* | among different periods.

[0} 24 dd 72 90 120 144 168 192 210 240
Timeo (Hour)

Dependencies across periods

Generating scenarios is an effective way to capture such dependencies!
Renewable energy scenarious generation?

Long-term uncertainties?

Our work focuses on the short-term load scecarios generation
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Generative neural networks

From the perspective of forecasting, the electrical load contains two parts:

Wt
/ Time / -
deterministic part: uncertain part:
Ut :f(Xt) €t = Yt — Yt
2 2
Train point forecast model  Train residual generation model Test both models

f() G(:) f(Xe) + G(Cy, 2)
T1 T2 T3
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Generative neural networks

Data horizon T1 ! 2 , T3
Related factors (weather cond'mon day type, etc) l Related factors
L
W ]
Real Ioad _I Point
< A forecast
Polm model
La H\w@ 408,
point forecast point
I‘oImmn e i
[ VlrMaI point forecast Point forecast |
J

L\&wm..; f

GAN model t:a@un

i scenario
Train G@ model ; forecast

| Probabilistic forecast |

Hiskony Time horizon Future
> Train /(X.) > Testf(Xi)  [> Test f(X,)
using point forecasting| > Calculate €; |> Test G(Ci,>2)
models such as > TrainG(C,.2) |» Final forecasts
MLP/SVR/RF/GBRT f(Xe) +G(Cy, 2)

Formulate the generation model G(-) using GAN !
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Generative neural networks

Traditional GAN model | need to generate
samples that can confuse
Generator the discriminator.
e Discriminator
noise Generated samples
Generated /
———bp  ———
Real?

Training S

datasst Real samples | need to identif_y whether
the load profile is real or
generated.

The adversarial game between these two neural networks can be presented as a min-max
optimization model:

max Es, [log(D(sr:6p))|+Ez[log(1-D(G(2;0¢):0p))]

- | 1 7
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Generative neural networks

Evaluation Criteria

From uncertainty perspective: Pinball loss (PL) and Winkler Score (WS) assess the
calibration and sharpness simultaneously.

(J": - j}‘ ” )q j}r . <y 0 +2(Le —w)/a y < Ly
P]"’(yr.q"yr): - (1 - WS(L¢,Ur,ye) = Ot L,<y <
(J":.q _J’.-)( _'?) Vg = Ve b+ 2y — U /Ja U, <
Performance of overall quantiles Performance of extreme quantiles

From variation perspective: g
the Q-Q plot visually evaluate the E =
= 06
similarity of the distributions of the 'Y
variations of the real load profiles and the 5y
E a
generated scenarios. 23w Q-Q plot
=
g ogM— - |
an 02 04 b 0ns L0
Variations of real load profiles

A= — =i
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Generative neural networks

Case Studies: Performance w.r.t Uncertainty

Point Uncertainty i _ : .
Forecasts | Niodeliug PL  |WS(a=0.2)§ | WS(a=0.1)} | » For different point
Proposed 12. 180.1 : forecasts, our proposed
CWGAN 13.7 191.49 261.59
AvE QRF 1423 | 189.64 231.84 EWOAN-GF moge]
QGBRT 14.05 | 190.66 243.66 outperforms the CWGAN
Proposed | 12.55 | 182.04 259.84
SVR CWGAN | 1278 | 19091 281.9 model, URF, ana QGBRT
QRF 14.5 194.66 240.76 in terms of PL and WS ( a=
QGBRT 14.75 | 201.88 255.55 15
Proposed 12.91 183.32 260.07 -2).
RF CWGAN 13.1 187.58 263.7 » However, QRF instead of
QRF 1444 | 194.06 242.99
QGBRT | 13.94 | 186.66 233.99 the CWGAN-GP model
Proposed 12.24 172.15 236.34 performs better in terms of
CWGAN | 13.11 180.22 235.96
il QRF 14.06 | 183.18 223.12 S Las0):
QGBRT 1436 | 189.39 236.59

Comparison among different PLF methods
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Generative neural networks

Case Studies: Investigation on Extreme Quantiles

— Rl laed

el - —#=- » The scenarios generated by

CWGAN-GP model are more
concentrated compared with those
by QGBRT and QRF.
» Such results suggest that it is hard
Quantile forecasts obtained by for the CWGAN-GP model to
G, BB M QRF generate extreme scenarios

Load AW

R N T S O T T S B B B
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Explainable machine learning

Providing insights into inner decision-making processes

Data
set
Data
set

Black-box fashion model
- —

Interpretable fashion model

A®O

input

input output
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Explainable machine learning

Post-hoc methods, e g_: Dhrect visnalization of how

= Interpretable local surrogates the mput features interact
* Gradient-based method jointly for cuputting the
model cutcome

<

Black-box model @‘ Intrinsic model
\/ Neural model
[ ]
h h
x"u —lmax xl'i[. xl{,|+l }Eil F Tenm

| . — 1 | : : |
Past information Future information
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Explainable machine learning

4 IEEE

Interpretable probabilistic forecasting of real-time electricity prices using a Transformer-
based model

Prediction horizon : 7,,,,, = 16 quarter hours

Creation Forecast Time |« to +1

to ! : : / / Ly + Tmaxl R}
iy TR Yto+7,q
_‘/ : HEN _/" | the g-quantile of the real-time electricity price
N at the prediction step 7.
—?
fg'g) X{ L= { tf,ienew., ’
PR T T
X? e {xh cal NRVt . hRT} E ]RZQ - ._,_.“'.-. 0 0
o o T~ Af:DA f,ca,l } R23
e Sl to+7 2 Lo+ S
r.’ - 1
h | ) foi \
X f
to_lmax LR X|t0 Xt0_|_1 e Xt()_"Tmax
| . . | | . . —
Past information Future information
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Explainable machine learning

f%ﬂ
: [ FFL ]
Transtormer Regularizationlayer (] T e -

Skip connections = - =— "> [ FF-NL ] I
o w ol

[ Transformer- specn‘lc attention layer I
KvO - K VQ )i

K V
I FF-NL | FF-NL | FF-NL | FF-NL :
| - =
I BLSTM 1_’ BLSTM BLSTM : v [ BISTM |-

————— 1‘ l -— o = s s wud = -
[ Variable ] [ Varlable } [ Varlable J [ Variable ]
selecftion sele%tion SE|E(T‘.tI0n selection
) , |
XtO —lmax X?D th-i-l thD+Tmax

| sse i i . i >

Past information Future information
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Explainable machine learning

Gating mechanism allowing some interpretability

g Element-wise multiplication

Probability-weighted output
Input sequence 7
0® ) [0.1 0% = 010+ 0200 +

Softmax function || A vector of probabilities

. )

1. \Variable selection 2. Transformer-specific attention layer
Ao T O (FENL - i
CNRVE [ TFRL) T O FENL : _%M
L AlE T T g’ Element-wise Multiplication Qtotr
e w e % Xl ] (.
PN (T FFL AT g S Vit Keyoro Vi, ]Jto Vi1 Ktlﬂ Vit Kt0+:;x Qi s
ot %’ [FFT-L] [FFT-L] [FFT-LJ [FFT-L] 5[FFT—L] [FFT—L] (FF-L ] [FIJ-L] [FIJ-L]

h h f
d)to_lmax ¢t0 ¢tf0+1 ¢th +Tmax ¢t0+7—

‘ RIr ‘

l
l

[T (FE-L] -
. “to=1 [ Embedding e ;
SRS DT [0H-{ FF-
", (1| Embeddin

h
t

‘ Past information ‘ | “ Future informationI ‘
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Explainable machine learning

Global temporal input feature importance

Test set: the year 2019, which is approximatively 35,000 novel (unseen) input conditions.
* Averaged temporal attention

e Averaged input importance

= -
AFT 0.27 :
NRV 0.26
Abal 0.05
& 0.03
JALSE 0.01 | 0.03

pihJhrenew. 1 911 | 0.04

pibfleem- 005 | < 0.01
peal 0.22 | 0.02
ADA 0.86
)\f-bal 0.05
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Explainable machine learning
Case-specific temporal input feature importance

0.101 I ,\{ 31;\

0.08 7
= True value [0 Quantile 5-95 B Quantile 25-35 M Quantile 45-55 .06
- —— Median Forecast N Quantile 15-85 B Quantile 35-65
0.04
n
- “““
0.00 L————+——————————— R RIS

to — 23 ty — lu tg 7 th+1 to —I— 9
Conditionning range

=

Past observations I

=

=]
]

VN

0.06

I xh,cal
0.05 { } to—t
.04— h
| P
.03—
0.02 I AT

20 H .
N | — T
0.00 -HULLLERUYRR AR RRRRpaYs "I I
w to — 23 tg lu to 7 to+1 to+9
fo — 23 fg ].9 fg ].5 fﬂ H. fﬂ ? fg 3 ) fo+5 fa+9 f 3 COIldlthIlIllIlg range

time horizon

407

Real-time prices (A\RT) (€/MWAh)
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Explainable machine learning

Enriching the neural network architecture with interpretable layers does not
hinder the prediction performance, while being beneficial for:
* the designer, who can check that the model does not exploit artifacts in

the data,
 the end-user, who will be better equipped for making a decision

Some perspectives:
 Extensive benchmark analysis investigating both post-hoc and inherent

interpretable methods.

 Developing natural language interpretations for leveraging intelligibility
for non-expert users.
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Summary:
With time-covariates
. Glo G aive) G -
> Pro and cons of different networks: DAY D0 GDR Ratve) GUWD)
Electricity WAPE 0.094 0.288 0.089
: : . MAE 53.036 143.463 50.150
» Physical knowledge embedding; e N —— S
Traffic WAPE 0.239 0.495 0.112
> Explainable/Interpreterable networks; MAP 0013 0097  0.006
RMSE 6.490* &8.238 5.194
PeMSD7 WAPE 0.070 0.100 0.048
» Do we really need DEEP networks??? MAE 3530 5714  2.811
RMSE 0.038 0.079 0.016
Exchange-Rate WAPE 0.038 0.450 0.013
MAE  0.029 0.066 0.010

(*) Results reported from the original paper.

Elsayed S, Thyssens D, Rashed A, et al. Do we really need deep learning models for time series forecasting?[J]. arXiv preprint arXiv:2101.02118, 2021.
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Ensemble Learning

In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better
predictive performance than could be obtained from any of the constituent learning algorithms alone [1].

Western Phrase: Two heads are better than one;

Chinese Saying: Three vice-generals are equal to one Zhuge Liang

«» Which method is the best?

s o *» Is it possible to combine these
N | S methods?
x::: .-: :?;"-,,__ -\\ . L

. @ L. ©o8

1 ....Iiii;ﬁf.":"
Generalized Additive Model esssssssssssssissssssnces
Random Forest

[1] https://en.wikipedia.org/wiki/Ensemble_learning
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Problem Formulation

Loss function: MAPE, RMSE, etc.
/ Combined forecast

» V, j‘ Real load

Determine . min 1L = ZL

the weights O

Summation and non-negative constraints
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Ensemble Learning for probabilistic forecasting

Various ensemble methods have been studied to combine multiple point forecasts.
However, combining probabilistic load forecasts is a rarely touched area.

Combine point forecasts Combine probabilistic forecasts

One dimension High dimension
RMSE, MAPE Reliability, sharpness, calibration
Analytical solution 77?7

Contributions of our work:
O New problem: Extend the ensemble method to the PLF area;
O Elegant formulation: Formulate the combining problem into an LP or QP model.
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Problem Formulation

Model Model Model 1)How to generate multiple

Generating Pruning Ensemble PLF models?

Model #1
g — Viodel#1 2)Among the N forecasting
8 Model #2 Ensemble models, how many and
g Model #3 = AModel which methods should be
E Vodel #9 selected for the final

Model #N ensemble formation

process?

3) How much weight should be given to each method for the optimal combination?
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Problem Formulation Loss function
/ Combined forecast

» Y, a- Real load

Summation and non-negative constraints

Determine .. min TL = ZL

the weights O

A deep investigation of the loss function is the key to
formulate and solve the optimization problem.
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Problem Formulation

Pinball loss and CRPS assess the calibration and sharpness simultaneously, thus balancing
the statistical consistency between the distributional forecasts and the observations and the
concentration of the predictive distributions

Yt 5 o3 = = : 1 : :
Pinball loss 4 Continuous ranked probability score (CRPS)
(yl_j}t,q)q j>t,q Syt e 2
PL(Y,,.», Z{ X X CRPS(F,y, )=| (F(z)-1(z—y,)) dz
Uy G, 2 N1=9) ¥, >, (F2)] (. E)1G2)
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Combining quantile forecasts
(yt_);tq)q yAthyt

PL At, s Vi :% | |
(y " ) \()/}t,q _yt)(l_Q) j>t,q > Vi

N
IED NN
n=1

104
22 X
T T T T T T
’ T T N
B ,"‘. .’.1'\
! R 17°3 ) .
BN \ oA\ . HAY I
18 AR Ry Y v —
N = Wy gy y
b eI - % V1 W Al
N R A n,qn,q,t> Jt
1Y % aouR Wn
16 TR A N B TR A —1 —1
b AN b I W = n=
) A ANy
g l“\. /| - TR A< -
z E WA N
S 14 A W, B
s N 0 BY
= By \ S,
NY/ Q‘\\.;{ .
v 8.7 Wno=1w,, >0
12 3 W 4 X ol o <
X ‘ n,q » Wn,g
o W
‘\‘/ \
1 ) n=1
0.8 I I I I I I
0 24 48 7 9% 120 144 168
Time/Hour
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Combining quantile forecasts Ly,
o, = arg n}ginz L, (J';r,q’ yr) Constrained quantile regression averaging
4 ter
=argmin D max {q (yr — Vg ) (1-¢ )(J’%,q — )}
T ter
s.t. Y, ® Z @O, Vi as Z w,, =1, w,,=0 Va. —
neN neN Vi

.', Auxiliary decision variables v,, = max {q(yr ~Vig ) (1— q)(j‘@,q — W )}

W, = arg min Zv,,g
7 per » LP problem

S.L. Y, ® Z Wy qVnigo Z 0,,=1, ®,,=0 Vn. > Model selection

nechN nchN

Vr,q 2 Q(yr _J?r,q )9 Vr,q > (I_Q)(j}r,q _yr)
LSS




Combining probabilistic forecasts

Combining quantile forecasts

Pinball losses of different combining methods.

We try to combine
13 individual
methods and test
the combined
forecasts in ISO-NE
dataset.

Power & Energy Society®

Improvement(%)

(=2 T

iRE Zones | gys (e} NH ME RI VT | SEMASS | WCMASS | NEMASS
BI 288.563 81.478 27.216 | 18.146 | 21.756 | 12.426 42.307 41.939 63.685
NS 327.569 95.058 31.586 | 19.003 | 25.738 13.247 48.817 47.041 71.873
MED 281.607 79.359 26.715 17.981 21.044 12.300 41.570 40.676 63.048
SA 280.375 79.322 26.618 17916 | 21.053 12233 41.336 40.638 62.752
WA 280.266 79.306 26.600 | 17.908 | 21.049 [ 12.227 41.329 40.616 62.706
QRA-E 276.417 77.995 27.184 | 17.806 | 21.683 | 12.303 41.484 40.949 61.793
QRA-A 271519 79.037 26.330 17.864 | 21.140 12.145 41.295 41.252 62.783
QRA-T 277.487 78.313 26.380 | 17.523 | 20.847 12.135 41.271 40.752 61.849
CQRA-E 356.527 100.925 | 33.829 | 22767 | 26.540 15.616 51.765 51.544 79.131
CQRA-A 277510 | 78.870 26.437 | 17.610 | 21.059 | 12.109 40.847 40.672 61.491
CQRA-T 269.953 77.961 26.034 | 17.492 | 20.619 | 12.061 40.941 40.422 61.524
8 - - - - - -
Relative improvements compared with the best individual.
7
6
5
4

=MED =mSA = WA

SEMASS

WCMASS

QRA-A EQRA-E mEQRA-T mCQRA-A ®mCQRA-T
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Models that are selected for different quantiles for total load (SYS).

uantiles | yo.¢h | 20-th | 30-th | 40-th | 50-th | 60-th | 70-th | 80-th | 90-th
Models

#1 0 0 0 0.128 | 0.123 0 0.015 0 0.102
#2 0 0 0 0.177 | 0.022 | 0.236 | 0.154 | 0.004 0
#3 0.036 0 0 0.041 | 0.255 0 0.123 | 0.302 0
#4 0385 | 0.444 | 0.281 0 0 0.030 0 0 0.068
#5 0.165 0 0 0.200 | 0.298 | 0.339 | 0.092 0 0.134
#6 0.037 | 0.093 0.264 0 0 0.000 | 0.251 0
#7 0 0.131 0 0.071 0 0 0.265 | 0.051 | 0.218
48 0 0.207 | 0.152 0 0.158 | 0.003 | 0.350 | 0.133 0
#9 0377 | 0.047 | 0.030 | 0.117 | 0.143 | 0.392 0 0.206 | 0.333
#10 0 0.078 0 0 0 0 0 0 0
#11 0 0 0 0 0 0 0 0.052 | 0.145
#12 0 0 0 0 0 0 0 0 0
#13 0 0 0 0 0 0 0 0 0
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Combining quantile forecasts

Models that are selected for the 90-th quantile for different zones.

Models Zones SYS CT NH ME RI VT |SEMASS WCMASS/NEMASS
#1 0.102 0.144 0.231 0.015 0.001 [N0B550 0 0 0.196
#2 0 0 0 0.082 0.074 0.146 0.071 0 0
#3 0 0 0.031 0 0 0.079 0 0.196 0
#4 0.068 0 0.089 |70349°7 0 0 0.038 0 0
#5 0.134 0 0 0 0.272 0 0.199 | 0318 | 0.199
#6 0 0 0.231 0.226 0.096 0 0 0.136
#7 0.218 0 0.058 0.058 0 0.082 0.166 0.218 0.049
#8 0 0.129 0.079 0.197 0 0.173 0.076 0.087
#9 0 0.185 0.021 0.243
#10 0 0 0 0 0 0 0 0 0
#11 0.145 0.267 0 0 0 0 0 0 0
#12 0 0 0 0 0.210 0 0 0 0
#13 0 0.119 0 0 0 0 0.062 0 0
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Combining density forecasts

The applications of the CRPS have been hampered by a lack of readily computable
solutions to the integral:

CRPS(F,,7,)=[" (F,(2)-1(z-,)) d

This drawback is overcome by [1]:

CRPS(Ft,yt)zE\Y—y\—%E\Y—Y’

Let’'s consider a simple case: Gaussian Mixture Distribution

L. Baringhaus and C. Franz, “On a new multivariate two-sample test,” Journal of Multivariate Analysis, vol. 88, no. 1, pp. 190-206, 2004.
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Combining density forecasts

Two lemmas for Gaussianmodel: ~ CRPS(F, y, ) %E Y -Y'

Lemma 1: The expectation of an absolute value of a finite mixture distribution is
the weighted sum of the corresponding expectations of absolute values of
the components of the finite mixture distribution.

If X,,X,, - Xy are the N components of the finite mixture distribution X with

w,E|X |

A4
n=1 N

-\Iir

weights o,,®,, - @, , then E|XE >
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Combining density forecasts

Two lemmas for Gaussian model: ~ CRPS(F,,y,)=E[Y - y|-(

Lemma 2: If X and Y are independent random variables that are finite mixtures
of normal distributions, then their sum is also a finite mixture of normal
distributions. i.e., if

fr(x)= Z_amxx |1, 00), fy(y)=z_:a2n¢(y|ﬁ4man)

L M
=0, o =20, Z@zl, Zag,,zl

=1 m=1

where A-| 1, 0)is the PDF of normal distribution N(u,o), then the PDF of Z=X+Y is:

f2(2)= Zza)za)m¢(x yz +ﬂma\/0-12 +O_:1)

=1 m=1
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Combining density forecasts

If individual density forecasts are Gaussian distributed f, (x) , the combined
forecast follows Gaussian mixture distribution:

N
fr(x)=D @, f,(x)
n=1
Then, the CRPS can be calculated as:
CRPS(F, y) = Za) E

ZZ—a}wE

11]1

J

The expectation of the absolute value of a normal distribution N(4,0)can be

calculated as follows: . 0 .
E\XE J.w|x| f(x)dx :J‘w—xf(x)dx+_|‘0 | x| f (x)dx

.
= J\/ze 20? +,u[2(D(£)—1]
T o
LSS
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Combining density forecasts
Thus, we have:

N

CRPS(F,y) = ZN:Zai,ja)ia)j+ZN:ana)1¢

where
(1, — 1,)° K, (4 — ;)
. + — — 20 —1
i,j \/_\/G G CXp( ( -I—G )) 2 [ (\/012 +O_]2) ]
B =20, exp(- 4 *E) )+, - 2o
. _ T
Finally, we have: m;n @' Qw+c'w QP problem!
St lTa) -1 >0 Is this convex?
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PDFs of predictions of four typical days given

Com bining denSity forecasts by the base models and their combination

Performances of combined models
Metri Method Simple Average | MAPE Based | CRPS Based 000131
etric 0.0015
MAPE / % 5.48 5.09 5.11 = — 3
MAE / MW 214.41 198.99 199.43 0.0010;
CRPS / MW 151.19 141.58 141.07 000051
CRPS Of the BeSt IndiViduaI MOdeI and CombinEd MOdEIS 0700002:3'0’(; 3000 3200 3400 3600 3800 4000 . 3'4‘1;;: 3600 3800 4000 4200 4400
x/MwW x/Mw
iEigion Diethotd ey Individual[Simple AverageMAPE Based|CRPS Based — om 000 [ o1
) 1487 I51.19 141.58 141.07 Nl foimme
ME g . § 32.71 327 32.40 L g e
NH 43.0 42.08 41.43 41.01 0:001%1 | RN s
VT 21.2 20.99 19.78 19.64 g g
RI 31.4 32.28 30.66 30.36 ==
SE 61.4 62.95 59.91 59.83 o010y /
WM 714 75.28 70.68 70.04 00091 0.0005.
NM 103.7 110.14 102.25 101.66
3600 3800 40'0;{;560 4400 4600 2200 2400 xfm? 2800 3000
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Relative CRPS improvements of Relative MAPE improvements of
the three combination methods the three combination methods

10 6

8 4 |I

6 p
] . Il III ||| Il [
g 4 || I | & T ME NH NT R tE ™M M
S S 2
) - Ea..
g, II II ol II “ d il s
A T ME NH VI E M o -6
& 2 IR| f z
C = 38

'4 -10

6 -12

8 -14

© Simple average = MAPE based = CRPS based = Simple average ® MAPE based = CRPS based
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Weights of the base models in the CRPS-guided model

GPR1 |GPR2 |GPR3 |GPR4 |GPR5 |[NN1 [NN2 |[NN3 |NN4 |[NN5 [XGBl [XGB2 |XGB3 |[XGB4 [XGBS
ET 0.33] 0.00{ 0.00] 0.00 000 o000 o0.19 o000 047 000 0.00 000 000 000 0.00
ME 0.00] 0.04] o0.00] o0.11] 0220 o014/ 009 003 o000l 021 o016 000 000 000 0.00
NH 015 001 0.02] 000 001 o000 000 000 000 007 o009 o018 o0.14] 0.06] 027
VT 0.00| 0.00 0.000 000 000 000 o000 o000 o019 012 o007 o012 o0.14] o013 023
RI 0.00| 0.00] 0.01] 0.00 000 0.00] 0.09 000 000 002f 034 000 o013 o024 0.17
SEMASS 0.00f 0.12| 0.00] 0.00 000 000 0.00f 000 000 o000 o0.16 000 037 001 034
WCMASS 0.00| 0.00] 0.000 0.00[ 0.00 0.00] 0.08 000 000 009 009 000 038 o013 022
NEMASSBOST| 0.00 000 000 000 000 000 000 000] 019 o000 o004 o000 031 033 015

Weights of the base models in the MAPE-guided model

GPR1 |GPR2 |GPR3 |GPR4 |GPR5 [NNI1 [NN2 [NN3 |[NN4 |NN5 [|XGB1 |XGB2 |XGB3 |XGB4 |XGBS5

CT 1026/ 0.00 0000 o000 000 000 o010 000F 063 000 0.00 000 000 000 0.00
ME 0.00f 0.12| 000 o000 Jo40| o000 032 002 o000 o006f 007 000 000 000 000
NH 0.08] 0.16] 0.01] 0.00] 000 o011 o000 003 000 002 022 000 0.00] o.10f 027
VT 0.00 0.00] 004 0.00] 000 002 000 o000 o015 005 005 013 029 0.00f 026
RI 0.00] 0.02] 003 o000 o008 o000 o010 004 000 o000f 030 o000 | 031 013 0.00
SEMASS 0.00f 0.08f 001 0.00 000 000 000 004 000 000 010 000 048 0.00F 029

WCMASS 0.00 0.00 0.00 0.00 0.00H 0.08 0.00 0.00 0.00W O.IZH 0.20 0.00 0.60]  0.00 0.00
NEMASSBOST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00] 0.03 0.00 0.00 0.54 0.43 0.00
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Quantile Regression Averaging

Quantile Regression Averaging (QRA) is a forecast combination approach to the computation
of prediction intervals. It involves applying quantile regression to the point forecasts of a
small number of individual forecasting models or experts.

E: Quantile regression: 1. Generate indiViduaI pOint forecasts;
. 2. Quantile regression;
Xe=[L91t 0 Fme]

° B q - vector of parameters Combined interval
/ forecast (e.g. for 3. Final forecasts.

g=0.05 & 0.95)

n}in [Z (q - 1yt(X‘Bq) (v — Xtﬁq)
%

Individual point forecasts

Nowotarski, Jakub; Weron, Rafat (2015). "Computing electricity spot price prediction intervals using quantile regression and forecast
averaging". Computational Statistics. 30 (3): 791-803.
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Generate individual point forecasts
Sister recency effect load forecasting models:
31 = Bo+ PiM; + BaW; + B3H; + BaW H; + f(Ty) By tuning the length of the training
+ Y f(Tra) + Y f(Titag) dataset and the partition of the
d lag training and validation datasets for
where: model selection, we can obtain
F(Ty) = BsTi+ BeT? + B1T; + BsTMy + BoT M, + ProT; M, different “average-lag” (or d-lag)
+ BuTiH, + BT Hy + B13T; H, pairs, leading to different sister
models.
Tt,d = %1 :724(;_7,,, Tr—lag

B. Liu, J. Nowotarski, T. Hong and R. Weron, "Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts," IEEE Transactions on
Smart Grid, vol. 8, no. 2, pp. 730-737, March 2017.
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Combining probabilistic forecasts

Performance on GEFCom2014

TABLE 11
FORECASTING RESULTS COMPARISON IN THE TEST PERIOD
(I.E., YEAR 2010) FOR THE MODELS SELECTED IN THE
VALIDATION PERIOD (SEE TABLE I)

Model Pinball Winkler (50%) | Winkler (90%)
class (S,L) | Score | (S,L) | Score | (S,L) | Score
QRA (8,183) | 2.85 | (7,183) | 25.04 | (7,365) | 55.85
Ind (1,91) 3.22 (1,91) | 26.35 | (1,365) | 56.38
BI (-,365) | 3.00 (-,365) | 26.38 | (-365) | 57.17
Direct - 3.19 - 26.62 - 04.27

Vanilla - 8.00 - 70.51 - 150.0

B. Liu, J. Nowotarski, T. Hong and R. Weron, "Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts," IEEE Transactions on
Smart Grid, vol. 8, no. 2, pp. 730-737, March 2017.
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Generate individual point forecasts

If there are different
partitions of consumers,

we cah obtain different
----- Clusterin
S Htenng bus load forecasts.

Combined model:

A J‘\ oo J\\ < Forecasting M
G(X) — Z W Jm (X)
lfferent forecasts m=1

leferent partltlons Load profile of one consumer

+ L) +
\/ fn (%)
AN
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Quantile Passive Aggressive Regression

Ee,q(yagq)
General Formula w1 = argmin [ d(w, wy) + 0l (ys, W - X¢) | A
A%
q\l\
L,-distance : 11 12 /q/ .
? d(-) = 3 |l —— > Y — g
. " £1-¢
g-insensitive - 1
quantile loss : 4y —wqg-x+<(g—1)) I.y—Wq'X>€( —q)
EE,q(WqQXe@/) = 0 if —cqg<y—wy-x< (1 —q)
(¢—)(y—wy-x+¢eq) ify—wy-x<—cq

Solving KKT conditions:

EE,Q(yta Wi - X¢) }

2
q [xll2

Wil = Wi + mesign(ye — Wi - Xe) TeXe Tt = min {C’,
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Performance on Irish Load Data

Errors on test set after batch learning Errors on test set after online learning
Method ACE PBL WKS  Method ACE PBL WKS
QSGD -0.92%  51.60 72243  QSGD -0.02%  30.04  527.94
QPAR 223% 47.61 1075.02 | QPAR -1.69% 2947  484.59
QNN -2.55%  54.94 776.86 QNN -0.64%  56.10  930.23
Batch QRA -5.25%  44.55 734.64  Batch QRA -5.25% 4455  734.64

Window QRA  -190%  40.30 659.94  Window QRA  -1.90% 40.30 659.94

*QSGD: Quantile Stochastic Gradient Descent
*QPAR: Quantile Passive Aggressive Regression *Window OPT: window-based optimization
*QNN: Quantile Neural Network

» All ensembles outperform the benchmarks after online learning except QNN
» The proposed method has the highest accuracy regarding pinball loss and winkler score

» A substantial performance improvement can be achieved by ensembles incorporating online learning.
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Quantile Regression Averaging

.ﬂ\ Quantile

. regression:

: / Xt = [Lﬁ,b '"Jfk,t]

. Combined interval
) forecast (e.g. for

1\ q=0.05 & 0.95)
k<m factors

B N extracted from a panel

Individual point forecasts

of point forecasts How about improvement on quantile regression?
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Summary:

» Procedure for combining probabilistic forecasts;
» Selection of individual forecasts with diversity;

» Combining quantile/density/sister forecasts;

» Data split is very important: train-validation-combine-test sets.
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Why we need to share data?

under-fitting over-fitting

. Test risk

N : \ }
. X :Training o g 8
sweet spot_ + — - = =
\ —— )

Complexity of H

Risk

Reducing overfitting risk Integrating more information

Mohri M, Mufoz Medina A. New analysis and algorithm for learning with drifting distributions[C]//International Conference on Algorithmic Learning Theory. Springer,
Berlin, Heidelberg, 2012: 124-138.
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Privacy Issues in Forecasting

Data Sharing
Platform

Information

Information exchange

exchange

Information

exchange
Data Owner 1 No direct Data Owner N
data sharing {
Data Owner 2

Data Barrier Data Barrier
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Privacy Issues in Forecasting
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Traditional ML-based forecasting algorithms assume that private data can be freely
accessed from a centralized location.

Such centralized scheme brings privacy

Central Location concerns and becomes impracticable for

—

IC

mainly two concrete reason:

ke |

|| |.|.|.|

» Legislation for privacy protecting

|
:

» Commercial confidentiality of data in

competitive environment.
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Privacy Issues in Forecasting
Legislation for Privacy Protecting

<IEEE

» UK launched two policies in 2018, Smart Meter Bill and The Data Protection Act, respectively authorizing half-
hourly electricity consumption data collection and implementing General Data Protection Regulation (GDPR) to
utilize consumers’ data and protect data privacy

» Canada implemented the Personal Information Protection and Electronic Documents Act (PIPEDA) in 2019, stating
the main purpose that when smart meter data is gathered, used, or revealed, the individual's consent is required,
and personal information can only be used for the stated specific purposes.

» To address privacy concerns with smart grid technology, the Office of Electricity Delivery and Energy Reliability and
the Federal Smart Grid Task Force has published a Voluntary Code of Conduct (VCC) for utilities and third parties in

the United States

» Data Security Law of the Peoples Republic of China was passed in 2021, which strictly regularizes data collection,
storage, use, processing, transport, provision, and disclosure.
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Privacy Issues in Forecasting

Commercial Confidentiality of Data

PERSONALIZED CUSTOMER SERVICE

In a open market, a competitive advantage can be gained through data analysis and
personalized customer service; therefore, utilities may be hesitant to share their data in this
circumstance.
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Privacy Issues in Forecasting

Problems & Solutions

How can high-performance forecasting be carried out in
scenarios where data privacy is crucial?

» Privacy-preserving techniques
» Collaborative forecasting
> Federated forecasting




<IEEE

Data Sharing for probabilistic forecasting =

Privacy-Preserving Techniques

Six privacy-preserving techniques for sharing data

Fully homomorphic encryption: Data is encrypted
before it is shared. It can be analyzed, but not
decoded into the original information.

There is an inherent trade-off

Diff tial pri : Noise is added to the dataset

sc: tk?gfiri‘: ilsairr?F;:J‘;zicgle tgll?:vl:rase-eengir?eerethae = bEtween the performance Of the
igi I i ts. o o o

oriemaineE prediction model and the privacy

Functional encryption: Select users have a key that of the local data.

allows them to view some parts of encrypted text.

Federated analysis: Parties share insights from
their analysis without sharing the data itself.

Zero-knowledge proofs: Users can prove their
knowledge of a value without revealing the value itself.

Secure multiparty computation: Data analysis is
spread across multiple parties such that no single
party can see the complete set of inputs.

Source: Deloitte research and analysis.
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Collaborative Forecasting
Definition & Goal

Because of the spatio-temporal relationships in time series data, collaboration among several
renewable energy power plant owners helps increase forecast skill.

Instead of sharing raw data, the model fitting problem is tackled in a distributed manner with
collaborative forecasting, which observes following principles:

» Improve forecast skill as compared to a scenario without collaboration

» Protect data privacy

» Consider synchronous and asynchronous communication between agents
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Collaborative Forecasting
Schemes

Two collaborative schemes are possible: centralized communication with a central node (central hub) and

peer-to-peer communication (P2P).

* The scope of the calculations performed by the agents in the central hub model is restricted by

Central hub scheme:

their local data, only statistics data is transferred to the central node (such as average values or
local data multiplied by locally determined coefficients).

* The central node combines these local estimators and coordinates the separate optimization
processes to solve the main optimization problem.

*  Atransmission/distribution system operator (TSO/DSO) or a forecasting service provider can
serve as the central node. The TSO or DSO can operate a platform that encourages collaboration

amongst competitive RES power units to increase forecasting accuracy and lower system

balancing costs.
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Collaborative Forecasting

P2P scheme:

In the P2P model, the agents each compute their estimators locally but share

their results with their peers, implying that each agent is both an agent and a

] ] central node.
A A

*  While P2P is more resilient (i.e., there are fewer points of failure), it is usually

difficult to make it as cost-effective as the central hub model.

rely (or trust) on a neutral third party.

] ] * The peer-to-peer paradigm is appropriate for data owners who do not wish to
. .

* P2P forecasting between prosumers or RES power plants could be potential

] ] business models, as could smart cities, which are characterized by a growing
A A

number of sensors and gadgets put at homes, buildings, and transit networks.
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Example 1

Privacy-preserving LASSO-VAR
MEAN RELATIVE NRMSE IMPROVEMENT [%] OVER THE LASSO-AR MODEL

h=1 h=2 h=3 h=4 h=5 h=6
p; |central| P2P |central| P2P |central | P2P |central | P2P |central | P2P |central | P2P
0 8.41 6.05 2.95 1.52 1.39 0.93
0.1 7.93|8.41| 5.98 |6.05| 2.91 [2.95| 1.49 [1.52] 1.35 [1.39] 0.89 [0.93
03745 7 589 7 |28 | 7 | 140 | 7 | 1.18 | 7 |0.69 | ”
05669 | 7 (577 7 288 | 7 | 130 7 | 1.00| ” | 052”7
0.7(571 | ” (554 | ” (284 | 7 | 124 7 |08 | 7 |033 | ”

0.9 3.75 |8.10f 5.19 |5.75] 2.74 |2.78| 0.75 |1.47| 0.62 |1.38]-0.82 |0.88

Goncalves C, Bessa R J, Pinson P. Privacy-preserving distributed learning for renewable energy forecasting[J]. IEEE Transactions on Sustainable Energy,
2021, 12(3): 1777-1787.




. ofs g . (s ¢ IEEE
Data Sharing for probabilistic forecash& =

Federated Forecasting

Privacy-Preserving Probabilistic Voltage Forecasting

®  Main Grid
A ¥ Load Only
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Federated Forecasting

Privacy-Preserving Probabilistic Voltage Forecasting

(At each training round 7 € R :

[

I

I

: if training round 7 = 1

6. _ domly initialized

l I r=0 rancomiy naliz if no convergence

: else

I

I

I

I

I

I

Local dataset: Sample users with 0,1 from last iteration Compute privacy budget ]
client 1 - probabilityg C. CC |
~~~~~ . Ve € C,
. M“‘n. Local model update wherein Mean model update from New model parametersg 5
' ™\ . . N . . .
Local dataset: L ‘ ‘Ehe feau}re n(')rmahzatlon is clients mvollved in round » 0 0+nA, + N[0, o (5 2
.. > internalized into the model o q|C|
client i A, = = Z A
h . g P Ac,r — Qc,r - g’r—l : q/C| ceC,
. ,,-"' |
( Local dataset: h | Add noise to enforce
oca’ dataset ! privacy of the trained model
client |C| I E—
End-user side: | Server side N (01 71l ( %' ) Jz)
local computations | 4l
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Federated Forecasting

Privacy-Preserving Probabilistic Voltage Forecasting

g Legend: real value quantiles [0.1, 0.9]
= Main Gri bkt = A |
A v L:alz O:Iy quantiles [0.01, 0.99] B quantiles [0.25, 0.75]
L PV :
¢ Community PV 1.04{ node A 1 node B
: ® Root node of line ramification M lﬂ
,
0.96 |
104 pode € Inode D
Ll N e N Dz N S\
0.961

t_12 t_1 1 ty t_12 t_1 ts
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Federated Forecasting

PERFORMANCE AND TRAINING TIME OF DIFFERENT MODELS.

Model Centralitzifrclle [min] coct (prit‘i}r?::)[min]
tot tot
QL™ [pu] (epochs) QL™ [pu] (epochs)
Prob-Persist - - 0.210 -
Prob-Avg 0.319 - 0.192 -
QRF 0.048 148 0.156 172
QGBDT 0.041 64 0.151 76
DFFNN 0.043 10 (33) 0.144 16 (27)
LSTM 0.034 52 (18) 0.186 63 (4)
BLSTM 0.032 88 (16) 0.172 105 (4)
A-BLSTM 0.192 54 (11) - -
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Federated Forecasting

4 IEEE

————— -BLSTM —-—-—- best private model

Total quantile loss QL' [puy]

0 20 40 60 O 20 40 60 0 20 40 60

Number of training rounds Number of training rounds Number of training rounds

Trade-off between privacy and performance
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Federated Forecasting
PERFORMANCE OF THE BLSTM FOR DIFFERENT PRIVACY SETTINGS.
Model q|C| o rOPt €Ot QL™ [pu]

BLSTM 5 0 59 - 0.060

BLSTM 5 0.25 60 105.1 0.104

BLSTM 5 0.75 38 4.0 0.132

BLSTM 10 0 57 - 0.054

BLSTM 10 0.25 54 167.7 0.090

BLSTM 10 0.75 32 1.3 0.112
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Federated Forecasting

Personalized federated individual load forecasting

&&&& 1)2:::0::::0‘ min L(wo) = %:, ii(f(wn; Tnk) = Ynk)’
DUDRD J(®) o

2) Personalization

§88 8 -
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Federated Forecasting

Personalized federated individual load forecasting

3.5
. I . -
o Federated learning : Personalization
: 3 3.01
2.4 : E
= 2.2 ! © 55
E ) : N 23 Better
= '8 g S Performance g
s 16 i -
& 14 : w 151
1.2 I 7
1 : 1.0 4
1357 911131517191 3 § 7 9 1113151719212325272931
Traning Epoch 0-5
0.0- T T T T T T T T
Changes of RMSE over client 1443 on training set. 00 05 10 15 20 25 30 35

RMSE of local model

Performance (RMSE) of personalized model against local model.
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Personalized federated individual load forecasting
16%
TABLE I: Performance with different resolutions (kW) E E::Z
Local Federated Personalized 2 10%
RMSE MAE RMSE MAE RMSE | MAE E 8%
30min 0.891 0.563 2.327 1.466 0.826 0.506 E 6%
1 hour 1.776 1.134 3.616 2.351 1.650 1.009 E 4% I I
4 hours 6.705 4.557 10.834 7.849 6.214 4.051 § 2%
6 hours 9.087 6.400 14.835 11.080 8.101 5.387 0%
30 min 1 hour 4 hours 6 hours

Time Resolution
uRMSE =mMAE

Performance improvement with different resolutions.
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An incentive to accelerate data sharing

pro

Accuracy
improvement

Buyers

p +'M
dlg

= | fe® — RES,
: Paymem /

Data sharing
A Mal'ket b'd (and{m11t}1;;1) “‘:
\

Wiy Operator iy
Privacy // N RESn

concerns

Data pricing and trading

con
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Data Pricing in Forecasting
One-staged Pricing

One of the most common pricing strategy is pricing data based on its
contribution on forecasting tasks. Thus, the definition of contribution tend to
be evidently model-related:

e.g.

. : Extra Model
Reduction on loss function[1] )
Improvement on forecasting accuracy

It can be called One-staged pricing due to pricing DIRECTLY based on the
performance of additional data on the forecasting model.

[1] Pinson P, Han L, Kazempour J. Regression markets and application to energy forecasting[J]. arXiv preprint arXiv:2110.03633, 2021.
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Data Pricing in Forecasting

Two-staged Pricing
Beyond modelling directly based on regression models, pricing strategy can be two-staged,

i.e. modelling the FURTHER revenue.
Extra Model Lower
- i =

Two-staged pricing tend to combine the techniques of forecasting and optimization, with
respect to the knowledge of ML and economics.

e.g.
Reduction on imbalance costs.[1]
Decrease on operational costs.[2]

(1]
[1]C. Gongalves, P. Pinson, and R. J. Bessa, “Towards Data Markets in Renewable Energy Forecasting,” IEEE Transactions on Sustainable Energy,
vol. 12, no. 1, pp. 533-542, Jan. 2021, doi: 10.1109/TSTE.2020.3009615.

[2]M. Yu et al., “Pricing Information in Smart Grids: A Quality-Based Data Valuation Paradigm,” IEEE Transactions on Smart Grid, Apr. 2022.
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RES agents’ profit in energy market:

A /1
pldr,m0) = mja, — CF/
where OT/i M Ey — x¢), « Ty > Ty
L(th — X)), Tt < Ty,

Al = max(0, 7] — %),
AY = max(0, 7 — 7)),

RES agents’ profit in data market:

~ Gilwis X5, M) = (p(E1%, i) — p(&5%, 2i0))

Minimize U; (-’i'?z',t; XS? Ma.)

[1]C. Gongalves, P. Pinson, and R. J. Bessa, “Towards Data Markets in Renewable Energy Forecasting,” IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 533-542, Jan. 2021.
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Data Pricing in Forecasting

Fairly allocation: Shapley Value

SIT(IN| — S| — 1)!
b= > B s v @) - o)l
SCN\{i)

In the context of forecasting, we can dim the total improvement on the
forecasting task as the GOAL of the cooperative game and allocate the
data buyers’ payment among data sellers according to their marginal

contribution.
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Hierarchical probabilistic forecasting

Yt

/\
YAt YB,t
e N 1. Bottom-Up Probabilistic Forecasting

Yaatr YABit YAct YBA,t  YBBit
2. Mean Forecast Combination and Reconciliation

Example of a hierarchical time series .

Elyrinlys,...,yr| = S Elbryn|ys, ..., y7]

Taieb S B, Taylor J W, Hyndman R J. Coherent probabilistic forecasts for hierarchical time series[C]//International Conference on Machine Learning. PMLR, 2017: 3348-3357.
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Summary:

» Integrating various data;
» Protect privacy: encryption, DP, etc.;

» Federated learning: vertical and horizontal;

» Valuation/contribution of data.
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