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Learning objectives

By the end of this course, students should be able to:

* |dentify, list, and describe the different types of probabilistic forecast
* Use a range of metrics and visualizations to evaluate probabilistic forecasts

* Describe the processes and data required to produce probabilistic wind and solar
power forecasts, electricity price forecasts, and electric load forecasts

* List contemporary statistical and machine learning methods used in probabilistic
forecasting, their characteristics and available software implementations

Part 3

* Describe how probabilistic energy forecasting is used in power systems
operation, control, and market participation

Part 4
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Power System Objectives

* Supply electric power to
customers

* Reliably
* Economically

* Consumption and production
must be balanced continuously
and instantaneously

Adapted from: B. Kirby
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Power System Operations Timescales \ (eps

A

System Load (MW)

y4 8 24

/\/\/\/\ ‘ Time of Day(hr)_/ ‘ f\ :

seconds to minutes minutes to hours day
Scheduling
Regulation Load Following
Days

Unit Commitment
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Unit Commitment \ (aps

Scheduling Large Power Plants — Part 1

 Some thermal units take a long time to start up, so need to tell them a day (or
more) in advance if they will be on

 Use forecasted load to schedule the generation mix

 Optimization problem, minimize cost of serving expected load, usually MILP

e Results of the optimization are what units are on the next day, and at what
levels they generate

Hydro
Geothermal
Coal
Nuclear

Generation (GW)

Mar 25 Mar 26 Mar 27 Mar 28 Mar 29 Mar 30 Mar 31 Apr 01

Solar is 60% PV and 40% Concentrating Solar Power with 6 hours thermal storage _
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Unit Commitment

Scheduling Large Power Plants — Part 2

* Constraints to ensure a feasible solution: generator minimum up/down times,
ramping limits, minimum generation levels, transmission constraints, etc.

Lt

&

* Security constrained unit commitment ensures feasible power flows during (n-
1) contingencies
e Usually co-optimize energy and ancillary services (reserves)




(e#s | GIEEE
Economic Dispatch feps.

Adjusting the Schedule with New Information

* Closer to the operating hour perform a “true-up” with better
forecasts
* (Can change output levels of units that are on (within ramping
constraints) but only start up and shut down really fast units
* Also an optimization problem
* LP if no start up shut down
* MILP with fast start units
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How do System Operators use Forecasts& ot

* Long-term forecasts (1 week+)

* Estimates of “typical” generation used
for resource and O&M planning

* Day-ahead unit commitment Days

* Day-ahead forecast, along with
uncertainty band, is fed into scheduling A
and market decisions

* Intra-day adjustments

* Meteorologist flags changes to real-
time traders

* Reconfigure peaking plant schedules >
Time of Day (hr)
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Dispatch Stacks \ o

Determining the Marginal Generator and Costs

MW
(Thousands)
1aoe- 1 1
Resources “clear”
130 thﬁ' mﬂrkﬂ in U'l'dﬂr ﬂf .............................. ;
lowest to highest cost. @ Fombustion
$100
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igh. Coal
u 0] EE—
Combined
$35 ycles
100
Nuclear
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Renewables®
a0
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G A Oparating day (24 hours) gl L1l 1] Source: PIM
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How do System Operators use Forecasts& ot

* Hour-ahead scheduling and trading
* Meteorologist provides high/low uncertainty band

* Use revised forecasts to optimize resources, markets,
transmission; trading with neighbors 4

* Intra-hour dispatch
* Value of forecast shifts to control room
* Operators move other generators up/down in

\

response to fluctuations >
Time of Day (hr)
* Assess reserves
* Are reserves sufficient to last until next dispatch _
interval? minutes to

hours

e Can we handle ramps?
* Are peaking resources needed?




More Frequent Decisions Reduce Uncertainty =
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Rolling upda;;es of commitment and dispatch, by system uperatulr,
of flexible resources offered in spot and secondary markets
I i i

1 ! !
>

T T+30 mins. T+3 hours T+1 day

(gate closure)

T: Time of operation (instant when electricity is produced and consumed)
B Uncertainty of net load at time T {MW) I Flexible resource held against uncertainty of net load at time T (MW)
©® Net load at time T
While more frequent forecasts provide greater accuracy, they are only
useful to the system operator up to the timeframe in which actions can

be taken in response to the forecast.

Source: Harnessing Variable Renewables — A Guide to the Balancing Challenge, International Energy Agency, 201 |



What does a user want out of
forecasts?
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Different Uses and Needs

* System Operators:

* Aggregate Forecasts

* Risk of needing additional generation or curtailment
* Plant Owner/Operator

* Plant level forecast

 Additional information with which to bid, or risk of non-
compliance with bids

Traders

 Generally aggregate forecasts, perhaps individual plant
forecasts

 More focus on rare events?




Understanding Uncertainty to
Inform Actions
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What is Situational Awareness? ‘

Providing the Operator with Additional Information for Decision Support
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Small Power System — 3 Generators — Point Forecast

e Load: 60 MW Should I turn on Diesel 2?

* Wind: Point Forecast: 12 MW, Max Capacity: 120 MW
gl Diesel 1: Max Capacity: 50 MW

@8 - Diesel 2: Max Capacity: 10 MW
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Wind Power Forecast Representation

Same System: Point Forecast at 12 PM =12 MW
Given this information, should I turn on Diesel 2?

 Wind Probability of

Exceedance at 12 PM:
* 95%: 2 MW
e 80%:5 MW
e 60%: 10 MW

1 6 7 8 7 e 50%:12 MW

Time (hour)

120

100+

oo
(=)
T

Wind power (MW)
D
S

Source: Yuan et al., Irregular Distribution of Wind Power Prediction, 2019
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Wind Power Forecast Representation

Same System Conditions: Point Forecast at 17:00 =45 MW

Given this information, should I turn on Diesel 2?
* Wind Probability of

Exceedance at 17:00:
* 99%: 8 MW
* 95%: 18 MW
* 90%: 25 MW
| 6 . ' | e 80%: 30 MW
Time (hour) * 50%: 45 MW

Source: Yuan et al., Irregular Distribution of Wind Power Prediction, 2019

oo
(=)
T

Wind power (MW)
N
=




: , \ (e¥es | GIEEE
Wind Power Forecast Representation

Same System Conditions: Point Forecast at 17:00 =45 MW
Given this information, should I turn on Diesel 2?

* How would your answer
change given the downramp
predicted at 18:007?

* Forecasting errors are not just in
magnitude, but often also
encounter phase errors

Wind power (MW)

1 6 12 18 24
Time (hour)

Source: Yuan et al., Irregular Distribution of Wind Power Prediction, 2019



Adjusting to reflect forecasting
uncertainty
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What are Reserves?
Helping the Power System Deal with Uncertainty

Operating
Non-even Reserve
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Reserve Reserve Reserve Reserve
Automatic Manual Instantane Non-Instaktaneous
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dispatch dispatch
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Contingency Reserves
Timescales

G

Powe & Ene

Market Response

Supplemental Operating Reserve
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Non-Spinning Reserve Determination

Electric Reliability Council of Texas (ERCOT) Solar Example

>

* Selected scenarios ; Issuc time
L — | submission time
(multi-time scale) g . :
5 update | lead time horizon H
2 | rate U |time L] resolution R~
(L12 days’ Hl year’ Rl hour’ Ul year) = = > —

(L1 week H1lweek R1hour jlweek) —(0:00 1:00  2:00 3:00 4:00 5:00

Time [dimensionless
(Ll day’ Hl day’ Rl hour’ Ul day) [ ]

The NSRR determination timeline
(Ll hour Hl hour Rl hour Ul hour)
V4 V4 V4
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Forecasting Errors over Time

Impacts on Reserves?

Forecasting result evaluation [%]

5_
X, forecasting
iﬂ) 3 - B=E=E=E - 8= =0 nMAE nRMSE MAPE nPL
= o e Rl : G 5.42 8.69 1.52
) r.‘—I & b e A b mb=de A h mh b A
0 z 70 TS 0 > I 155 1.98 3.37 0.67

o Lead Time [hour] o
The deterministic net load forecasting error vs. lead time in the

historical forecasts

" Forecasting error increases with lead time in the historical data
= Forecasting error increases with the lead time in three steps of the developed method
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Reserve Reductions L

More Recent Information Leads to Savings

30001
3000
EZOOO E‘
C—:UlOOO- O ‘ ‘ ‘
> Method & ERCOT Ml Step 201 M 1DA = 1000 | 1l | |
o PRI B cwepZizBW /DA B 1HA = ‘ \ethog ® ERCOT M Step201 M 1DA
1 2 3 4 5 I?/I J] 8 9 10 11 12 0- .Step2|]2.7DA o 1HA
on
Hourly non-spinning reserve requirement in each month 0123456789 101](.)]&1314151617181920212223
Hourly average NSRR [MW] Hourly non-spinning reserve requirement in each hour
Hourly
average
The current ERCOT method 2353.87 _
IEERNCA Result from step 1 with a 2-hour 2268.05 = NSRR reduction: 13.93%, 21.10%, 50.62% for three steps
resolution = Consistent over different hours and months
Result from step 1 with a 1-hour 2210.16
) resolution
ETXI Weekly updated reserve 2026.09
ETER Hourly updated reserve 1857.32

m Hourly updated reserve 1165.33



Changes in Reserve Requirements i
Changes over Time Horizon and Percentiles
35001 1000/ Method = IDA 4 IHA # 7DA -
> =
%3000- %zooo-
225004 S 1000
Z 20001 0L_s | . .
‘Method + ERCOT 4 Step2-1 # Step2-2 “ 0.0 0.2 0.4 0.6
- - Lower Percentile Bound
0 5 10 15 20 25 _
Time Horizon [hOUI‘] Hourly NSRR vs. lower percentile bound

Hourly NSRR vs. time horizon of historical forecasts

= NSSR increases with time horizon of historical forecasts and lower percentile bound
= NSSR is flexible by adjusting these two parameters



Changes with Increased Solar Shares

6000

5000 -
4000

o 3000

o

wn

22000
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-1000 I I I I I I J
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Hour

NSRR time series under a high solar penetration

| ©IEEE

Hourly average NSRR [MW]

Hourly
average

ERCOT The current ERCOT method 2353.87

“ Hourly updated reserve under 1414.75

low solar

m Hourly updated reserve under 539.82
high solar

= The hourly NSRR is reduced by 39.89%, 77.07% based on 1HA forecasts under low and high

solar penetration

= Negative values mean no NSRR is required during these time periods
= High penetration of solar power results in lower net load uncertainty
= Replace negative values with 0 in the post-processing




Seasonal and Diurnal Patterns

30001 30001
2000 §2OOO
= =
= o
() =
E p
= 1000 1000/{
Method M ERCOT M 1HA M 1HAHS Method Ml ERCOT M 1HA M 1HAHS
0_
0_
y 3 41 5 € 5 5§ 5 10 1 o 01234567829 1011121314151617181920212223
Month Hour
Hourly non-spinning reserve requirement in each month Hourly non-spinning reserve requirement in each hour

= NSRR with adaptive scheduling indicate seasonal and diurnal patterns
= NSSR decreases with high solar penetration

= Consistent in different hours and months
I



Extended Range Hydro Inflow
Forecasting

y/



Quality vs. Value
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Extended Range Hydro Inflow Forecasting

Context:

Range of weather forecasts
extending all of the time
Hydro plant incentivised to
operate flexibly

Opportunity?

Can be forecast inflow
beyond one week-ahead?
What is the value?

R.M. Graham, J. Browell, D. Bertram and C.J. White, "The application of sub-seasonal to seasonal sse
(52S) predictions for hydropower forecasting", Meteorological Applications, 29(1), e2047, 2022, CO u rtesy Of ‘leth ro B rowel I’ RObe rt G ra h am & @ Renewables
doi: 10.1002/MET.2047



https://doi.org/10.1002/MET.2047
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Quality vs. Value

Extended Range Hydro Inflow Forecasting

Weather Inflow & Water Operational
Forecast Level Forecast Decisions
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Extended Range Hydro Inflow Forecasting

Quality vs. Value

Weather Inflow & Water Operational

Forecast Level Forecast Decisions

Initial condition

* Probabilistic forecasts of precipitation and uncertainty
temperature
* Produced by Ensemble Numerical Weather Prediction

e Evaluation: Skill score (relative to model climatology)
 Weekly totals 1 to 6 weeks ahead

Forecast /Y

uncertainty

Source: Bauer, Thorpe and Brunet, “The quiet revolution of numerical weather prediction,” Nature, 2015
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Quality vs. Value

Extended Range Hydro Inflow Forecasting

Weather Inflow & Water Operational
Forecast Level Forecast Decisions

a
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Quality vs. Value
Extended Range Hydro Inflow Forecasting
Weather Inflow & Water Operational
Forecast Level Forecast Decisions
S [ Forecas :
~ |-+ CVFalds W
* Probabilistic forecast of inflow at specific location © ﬂf’di
- y 4
* Post-processing required: gamlss model with Gamma 59 ?/
distribution . //”'/
53 Vi
: : : : : : 4
Evaluation relative to observations: calibration and skill Y W A
S 7
Q | 'if!’w
o

00 02 04 06 08 1.0
Nominal
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Quality vs. Value
Extended Range Hydro Inflow Forecasting
Weather Inflow & Water Operational
Forecast Level Forecast Decisions
 Probabilistic forecast of inflow at specific | " Benchmark
location = N
Eg o
e Post-processing required: gamlss model with % _
Gamma distribution e . 4
_ TN — . J
* Evaluation relative to observations: ?]
1-7  8-14 15-21 22-28 29-35 36-42

calibration and skill

forecast horizon [days]
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Quality vs. Value

Extended Range Hydro Inflow Forecasting

Weather Inflow & Water Operational

Forecast Level Forecast Decisions

Need to capture how forecast inform decisions, working with end users:

1. Day-to-day: Change generation schedule to manage water level — converting water to energy at peak or
off-peak price
 Costs associated with changed generation schedule (based on forecast)

Costs associated with resulting inflow and water level (based on actuals)
2. Large inflow events: Avoid bad situations — water spill, safe limits on water levels and down-stream flow
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Quality vs. Value

Extended Range Hydro Inflow Forecasting

Weather Inflow & Water Operational
Forecast Level Forecast Decisions

?P'"I"'l"'I"I"I"'I"I"I

Summer
[ | m—\\inter

D

 Compare “value of water” based on using
climatology vs forecast:

* Stylised model, but indicative numbers

e Significant value!

* Likely that some of this value already realised

* |Isvalue sufficient to justify new product and

change in practice? S S |
10 20 30 40 S50 60 70 80 90 100

Peak - Off-Peak price [£ / MWh]

— (4]
B

w
—

N
-

Value Increase [£ / MWh]

—
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Quality vs. Value

Extended Range Hydro Inflow Forecasting

Weather Inflow & Water Operational
Forecast Level Forecast Decisions

-
.

e
4

Weather Model
Skill

Evaluation

4
/
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Good practice to make sensible modelling L users critical for
decisions and maximise potential value. | meaningful and
credible evaluation.




Incorporating Uncertainty Forecasts
into Power System Operations




Irradiance or Power

Main Methods and Forecasts Used \

Deterministic Optimization Robust Optimization

inf f(x,§)
st.x€e X

——— Observation

—— Deterministic forecast

@ 10% confidence interval

90% confidence interval

Power [MW]

inf sup f(x,§&)
s.t.xe X

20000 -

(50t percentile ) 15000 -

10000~

5000 -

@%ﬁss

$IEEE

Stochastic Programming

st.xe X

Hour of Day
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Robust Unit Commitment

900— l

1
— 30 Scenarios .
Nominal (mean) wind production (&)

1 L] 1 1 1 Ll Ll I

80011 = = =98.8% confidence level [5,-: — &t  Eit + f,-t]
——— 1000 Out-of-sample Scenarios

700

()]
o
o

w
o
o

Wind Production [MWHh]

200

100

> 4 6 8 10 12 14 16 18 20 22 24
Source: Morales-Espana et al. 2018 time [h]
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Adaptive Approaches \ e

A Percentiles

> -
,  New Probabilistic _ger T 95th
Solar Power Forecast e

Solar Power Generation

Forecasting Time Horizon
e
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Challenges in Implementation (o= |

Why aren’t we using these in power markets already?

e Computational Challenges
* Input data requirements for Energy Management Systems
* Solve times
* Number of Scenarios
* Need ~1000 scenarios for decent representation of extremes

 Butthen these are reduced for computational reasons, what information
is lost?

e Market Issues

* What does this do to LMPs?

* How do you compensate for events that do not happen?
 Current underrepresentation of the cost of extreme events

e Reliability vs. Economics
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Conclusions

Tools and Industry Practice

* Probabilistic forecasts can provide additional information that can
aid in integrating renewable energy sources into the power grid
* Probabilistic forecasting is more advanced than power system use

cases

e Research on how to automate the utilization of the additional information
provided is needed

 The best forecast is worthless if its not integrated into a decision-
making process
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