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Learning objectives
By the end of this course, students should be able to:

• Identify, list, and describe the different types of probabilistic forecast 

• Use a range of metrics and visualizations to evaluate probabilistic forecasts 

• Describe the processes and data required to produce probabilistic wind and solar 
power forecasts, electricity price forecasts, and electric load forecasts 

• List contemporary statistical and machine learning methods used in probabilistic 
forecasting, their characteristics and available software implementations 

• Describe how probabilistic energy forecasting is used in power systems 
operation, control, and market participation
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Part 1 Contents

Introduction to probabilistic energy forecasting

• Motivation
• Types of probabilistic forecast
• Principles of energy forecasting

• Timescales

• Physical and fundamental methods

• Data-driven methods

• Forecast quality and evaluation
• Decision-making game



Motivation

Probabilistic energy forecasting 
from minutes to weeks-ahead



Example: Load 

• The objective of electricity markets and system operators is to 
ensure electricity supply and demand balance
• This requires forward planning based on forecasts of electricity demand

• Forecasts are imperfect

• Some flexibility must be included in schedules to manage forecast errors

• This comes at a cost, so how much flexibility (often called “reserve”) 
should be scheduled?



Example: Load 

Deterministic forecast

Forecast at each time 
point is a single number

Suitable for decision making if:
1. Cost of over/under predicting is 

symmetric
2. User is risk neural

Consider this day-ahead 
forecast of load on the 

GB transmission system:



Example: Load 

Probabilistic forecast

Forecast at each time 
point is a probability 

distribution

Can make decision based on:
1. Asymmetric costs of 

over/under predicting
2. Risk indices/metrics



Use case 1: Risk management

When do you take an umbrella? 

Risk appetite drives many decisions:
• When there is a chance of rain, at what probability do you change 

your behavior?
• Power system operators hold “reserve” to meet unexpected short-

falls in supply. How much?
• Energy traders must balance risk and reward, what kind of risk is 

acceptable?



Use case 2: Cost-loss

“Optimal” decisions under uncertainty

Example: Consider the occurrence of an uncertain
adverse event, 𝐸. If 𝐸 happens, we incur loss 𝐿, if not,
there is no loss. We have to decide if we should take
precautionary action, with cost 𝐶 , to avoided the
potential loss.

Given the probability of occurrence 𝑃(𝐸), when 
should with take precautionary action?

Adverse events occur Adverse event does not occur

Precautionary action taken 𝐶 𝐶

Precautionary action not taken 𝐿 0



Use case 1: Cost-loss

“Optimal” decisions under uncertainty

Adverse events occur Adverse event does not occur

Precautionary action taken 𝐶 𝐶

Precautionary action not taken 𝐿 0

Options:
1. If we take precautionary action, the expected cost is 𝐶
2. If we do not, the expected cost is P 𝐸 × 𝐿

Therefore, if 𝑷 𝑬 >
𝑪

𝑳
, the expected cost is minimised by taking precautionary action.

• Many decision-making problems can be expressed in a form like this
• We may have some control over 𝑃 𝐸 , 𝐶, and/or 𝐿
• Calculating 𝑃 𝐸 requires a probabilistic forecast
• Describing the cost and loss can sometimes be more challenging than forecasting



Example: Wind and Price

Optimal trading

• Traders of renewable energy rely 
heavily on forecasts

• Penalties for over- or under-
delivering against a contract are 
asymmetric

• The optimal volume to trade may 
be derived from production and 
price forecasts

• Aim: achieve equal exposure to 
imbalance costs for over an under 
production, i.e., 𝑃 𝐸 =

𝐶

𝐿 Figure from classic trading example: P. Pinson, C. Chevallier and G. N. Kariniotakis, 
“Trading Wind Generation From Short-Term Probabilistic Forecasts of Wind Power,” 
in IEEE Transactions on Power Systems, 2007, doi: 10.1109/TPWRS.2007.901117



Types of probabilistic 
forecast



Probability and predictions

Desirable properties:
1. Calibration/reliability: Events should occur with the predicted 

frequency
2. Sharpness: Uncertainty should be minimized/forecast should be as 

confident as possible
3. Resolution and Discrimination: Forecasts differ from one another, 

and are different for different outcomes

Note: #1 is a necessary property, #2 & #3 are to be “optimized”.



Binary and categorical forecasts

• Predicted probability of a future event: 0-100%, e.g.:
• Plant failure

• Generation margin falling below some threshold

• Loss-of-load (LOLP)

• Probability of multiple (mutually exclusive) categories: 0-100%, 
summing to 100%, e.g.:
• Probability of being in a given “weather regime”
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Interval and density forecasts

Example: Wind Power Forecast
• 90% prediction interval and 

deterministic forecast (white)

Notice:
• Variability of interval width
• Asymmetry around 

deterministic forecast
• How often should we expect 

the observation to be outside 
the interval?



Interval and density forecasts

Example: Wind Power Forecast
• 90% prediction interval and 

deterministic forecast (white)

Notice:
• Variability of interval width
• Asymmetry around 

deterministic forecast
• How often should we expect 

the observation to be outside 
the interval?



Interval and density forecasts

Example: Wind Power Forecast
• 90% and 50% prediction 

interval

Deterministic forecast not 
shown:
• Can be misleading: it is not 

“the most likely trajectory”
• Usually too smooth compared 

to actual values



Interval and density forecasts

Example: Wind Power Forecast
• 10% to 90% prediction 

intervals
• We can visualise multiple 

intervals for more detail
• A density forecast is a smooth 

function spanning all 
probability levels

However…
• This forecast doesn’t tell us 

about correlation in time



Scenario/trajectory forecasts

Example: Wind Power Forecast
• 15 scenarios or trajectories
• Temporal correlation is 

represented…
• …but we’ve lost the clarity 

provided by prediction 
intervals.

Perhaps having more scenarios 
will help…



Scenario/trajectory forecasts

Example: Wind Power Forecast
• 15 scenarios or trajectories
• Temporal correlation is 

represented…
• …but we’ve lost the clarity 

provided by prediction 
intervals.

Perhaps having more scenarios 
will help… if you’re a computer !



Principles

Probabilistic energy forecasting 
from minutes to weeks-ahead



Timescales

Very Short-term Short-term Medium-Term Long-term

Timescale Minutes to Hours Hours to Days Weeks to Seasons Years

Applications/ 
Users

Balancing/TSO
Markets/Traders

Markets/Traders
Planning/TSO

O&M/Operators

O&M/Operators
Markets/Traders

Planning/TSO

Planning and 
investment/

TSO, policy makers, 
developers

Methodology

Time series methods: 
statistical, machine 

learning

Numerical Weather Prediction, NWP post-
processing, data-driven and 

physical/fundamental models

Climate projections, 
Technological 

forecasting 
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Principles: Physical and 
fundamental models

Sometimes the best way to produce a forecast is to model the 
underlying physical or economic relationships…
• Weather forecasting: applying knowledge of fluid dynamics and 

atmospheric physics to compute future weather
• Electricity price forecasting: fundamentals, e.g. price of fuels, plant 

efficiencies, load, (+ efficient market hypothesis)
• Wind and solar forecasting: physical models of energy conversion, 

e.g. wind turbine power curves and PV panel efficiency



Principles: Physical models

Numerical Weather Prediction

Fig: NOAA.gov

The NWP process:

1. State of the atmosphere estimated based on 
observations

2. Equations describing atmospheric physics solved 
for each cell and its neighbours to estimate future 
state:

Navier-Stokes Equations
• Set of partial differential equations that describe motion 

of a viscous fluid. 
• Conservation of: Mass, Momentum & Energy
• Field of computational fluid dynamics
• Some processes are “parametrised” if can’t be solved 

explicitly 



Principles: Physical models

Numerical Weather Prediction

Producing NWP is computationally demanding, placing limitations 
on frequency and resolution of forecasts:

Temporal Resolution
• Typically, new forecasts issued 4 times per-day
• Sometimes more, e.g. hourly updates for short horizons
• Forecast output available in 1 or 3 hour time steps
Spatial Resolution
• Global models range from 1⁰ to 0.1⁰ lat x lon (100km-10km). Small 

(and fast) scale features and processes not resolved
• Local models may be 1-10km resolution, complex terrain and 

convection may be resolved
Number of ensemble members…

Fig: NOAA.gov



Principles: Physical models

Numerical Weather Prediction

Example: Impact of Terrain and Spatial Resolution of Model

Illustrative example adapted from Justin Sharp, Sharply Focused



Principles: Physical models

Numerical Weather Prediction
Mountain Range appears as

a smooth dip at 27 km spatial resolution

27 km

Model Resolution

A
lt
it
u
d
e
 (

m
) Contours of rolling terrain

not represented at 27 km resolution

27 km

Illustrative example adapted from Justin Sharp, Sharply Focused



Principles: Physical models

Numerical Weather Prediction

Details of peaks and valleys
not represented at 9 km resolution

27 km

Model Resolution

9 km
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)

9 km

Illustrative example adapted from Justin Sharp, Sharply Focused



Principles: Physical models

Numerical Weather Prediction

27 km

Model Resolution

9 km
3 km

Peak and valley represented
at 3 km resolution
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3 km

Illustrative example adapted from Justin Sharp, Sharply Focused



Principles: Physical models

Ensemble Numerical Weather Prediction

Quantification of uncertainty cause by imperfect 
initial estimate of atmosphere and model physics

• Multiple forecasts produced with different initial 
conditions

• Spread of ensemble members indicates uncertainty 
in forecast

• Most valuable in “medium-range” and beyond (3+ 
days-ahead)

• As we look further ahead, ensemble approaches 
“climatology”, i.e. the range of conditions typical of 
the time of year

Figure source: Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical 
weather prediction. Nature 525, 47–55 (2015). https://doi.org/10.1038/nature14956



Principles: Physical models

Ensemble Numerical Weather Prediction

Example: Storm Arwen
• Major storm in UK and Europe
• 26-28 November 2021
• High winds and snow
• Over 1 million customers affected
• 10,000 still without power a week later

Lets see how the ensemble weather 
forecast captured this event…



12 days ahead, predicted 
winds during Arwen 

resemble climatology

Short-term forecast is 
confident, low spread in 

ensemble members

















5 days before Arwen there 
is a clear signal the high 

winds are possible





3 days before Arwen high 
winds are clearly forecast





1 day before peak wind 
speeds, extreme wind is 

predicted





Principles: Physical and 
fundamental models

Sometimes the best, or only, way to produce a forecast is to model the 
underlying physical or economic relationships…
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Wind Farm Consider a new wind farm:
• The power curve for individual turbines is 

known
• The smoothing effect of combining these 

in a farm may be estimated (imperfectly)
• We can convert wind speed forecasts into 

wind power forecasts!



Principles: Physical and 
fundamental models

Sometimes the best, or only, way to produce a forecast is to model the 
underlying physical or economic relationships…
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Data
Warning!
There are many complex processes at play in 
energy conversion (/consumption/pricing) 
and building them all into a physical or 
fundamental model may not be possible.

Data driven methods may be preferred, once 
there is sufficient data to train them…



Principles: Physical and 
fundamental models

Sometimes the best way to produce a forecast is to model the 
underlying physical or economic relationships…

Pros Cons

• Interpretable
• Effective (sometimes necessary) in new 

situations, i.e. those not in historical 
data, such as
• New market arrangements
• New power  plant
• New technology
• Unusual fuel costs
• Extreme events in general

• Can be less accurate then statistical/ML 
methods, especially weather-to-power 
relationships

• Can be complex:
• Difficult to build and maintain
• Uncertainty quantification can be 

challenging
• High computational burden



Principles: Data-driven forecasting
Statistics… Machine Learning… Artificial Intelligence… call it what you like!

Brief introduction, more in parts 2 & 3 of this 
tutorial…



Principles: Data-driven forecasting
Statistics… Machine Learning… Artificial Intelligence… call it what you like!

Historic Data
Model 

Development
Operational 
Forecasting

Big idea: Learn the relationship between data available
when making a forecast and future values of a quantity
of interest from historic data.



Principles: Data-driven forecasting
Statistics… Machine Learning… Artificial Intelligence… call it what you like!

• Input-output 
pairs

• Relevance!

• Data cleaning

• Feature 
engineering

Historic Data
Model 

Development
Operational 
Forecasting

Assumptions:
• The relationship between inputs and outputs in the same now as it was in historic data
• A model capable of learning this relationship can be found

Requirements:
• Sufficient volume of relevant data is available

Other considerations:
• Data quality/cleaning
• Feature engineering



Principles: Data-driven forecasting
Statistics… Machine Learning… Artificial Intelligence… call it what you like!

• Input-output 
pairs

• Relevance!

• Data cleaning

• Feature 
engineering

Historic Data

• Choice of 
framework

• Tuning: 
structure, 
hyper-
parameters

• Evaluation & 
verification

Model 
Development

Operational 
Forecasting

Vast array of models/frameworks to choose from!
Any method implemented well will likely outperform a fancy method implemented poorly.

Expert judgement and hyper-parameters tuning play a large role in performance
(including featuring engineering!)

Model/forecast evaluation should match end-use
Produce forecast for maximum value!



Principles: Data-driven forecasting
Statistics… Machine Learning… Artificial Intelligence… call it what you like!

• Input-output 
pairs

• Relevance!

• Data cleaning

• Feature 
engineering

Historic Data

• Choice of 
framework

• Tuning: 
structure, 
hyper-
parameters

• Evaluation & 
verification

Model 
Development

• Live operation

• Robustness

• Up-dating / 
online learning

• Maintenance

Operational 
Forecasting

Operational Requirements
• Input data must be available in time to produce the forecast!
• Robustness to missing data
• Continuous/periodic updating of model
• Maintenance: data and underlying processes may change



Principles: Data-driven forecasting
Statistics… Machine Learning… Artificial Intelligence… call it what you like!

Pros Cons

• Can be highly accurate
• Huge range of powerful methods 

available
• Several frameworks for uncertainty 

quantification

• Accuracy depends on data quality, 
volume and relevance

• Poor (and unknown) performance in 
“unseen” situations

• Interpretability



Principles: Data-driven forecasting
Statistics… Machine Learning… Artificial Intelligence… call it what you like!

In practice, many best-in-class forecasting systems
combine physical, fundamental, and driven method.

Lets take wind power as an example again:

…

Model Development

Data Cleaning
Feature Engineering

Historic Data
Historic NWP

Historic Power ProductionTraining 
Phase



Principles: Data-driven forecasting
Statistics… Machine Learning… Artificial Intelligence… call it what you like!

In practice, many best-in-class forecasting systems
combine physical, fundamental, and driven method.

Lets take wind power as an example again:

…

Power Forecast

Latest NWPOperational 
Phase



Principles: Data-driven forecasting
Statistics… Machine Learning… Artificial Intelligence… call it what you like!

In practice, many best-in-class forecasting systems
combine physical, fundamental, and driven method.

Lets take wind power as an example again:

…

Power Forecast

Model Development

Historic Data

Operational 
Phase with 

Update

Latest NWP



Forecast quality 
and evaluation

What is a ‘good’ forecast?



What makes a ‘good’ forecast?

Desirable properties:
1. Calibration/reliability
2. Sharpness
3. Resolution and Discrimination
4. Better decisions!



Calibration/reliability

Reliability Diagrams

• For univariate probabilistic forecasts
• Frequency of observed events should match their nominal 

probability
• I.e., 80% of observations should fall below the 80% quantile 

of a density forecast
• With finite data, some deviation from “perfect” is to be 

expected, can be assessed with confidence intervals

• Recall: calibration/reliability is a necessary condition so should 
always be verified.



Calibration/reliability

PIT Histograms

• For univariate probabilistic forecasts
• Probability Integral Transformation (PIT): inverse predictive CDF 

evaluate at corresponding observation.
• PIT transformed data should be uniformly distributed
• Similar information as reliability diagram, but presented slightly 

differently
• Example from the same data as previous slide
• Highlights that the this forecasting system may not be 

calibrated at high and low probability levels

• (Multivariate extension: “rank histograms” for ranking vectors 
based on some pre-rank function)



Calibration/reliability

Multi-variate forecasts

• Examples:
• Temporal trajectories (seen earlier)

• Spatio-temporal trajectories (multiple locations)

• Multi-variate spatio-temporal trajectories (multiple variables and 
locations)

• Verifying calibration can be very difficult! 
• Verify margins (individual locations/lead-times/variables) as if univariate

• Verify dependency structures (rank histograms, covariance)

• Verify calibration of relevant “event” forecasts, e.g., ramps



Scores, metrics and skill

Pinball and CRPS

• Continuous Ranked Probability Score 
evaluates full distribution

• Discrete form, Pinball Score, evaluates 
individual quantile forecasts

• Reward sharpness as calibration (but 
calibration should always be verified 
separately)

𝐶𝑅𝑃𝑆 =
1

𝑁
෍

𝑡=1

𝑁

෠𝐹 𝑥 − 𝟙 𝑥 ≤ 𝑦𝑡
2
𝑑𝑥

Density 
Forecast 

(CDF)

Observation



Scores, metrics and skill

Other scores

Univariate
• CRPS/Pinball
• Log Score (Ignorance Score, and extensions 

Conditional/Censored Likelihood Score)

Multi-variate
• Log Score
• Energy Score (generalization of CRPS)
• Variogram Score
• Dawid-Sebastiani Score

When comparing forecast 
performance, it may be 

necessary to test whether 
apparent differences are 
“statistically significant”.  

Several methods are at our 
disposal but are beyond 
the scope of this course. 

See Further reading.



Scores, metrics and skill

Skill scores

We often want to compare the performance of two forecasting 
systems, one with metric 𝑀 and a reference system 𝑀ref. Skill scores 
can have greater discrimination than raw scores alone:

𝑆𝑘𝑖𝑙𝑙 =
𝑀ref −𝑀

𝑀ref −𝑀perf

𝑀perf is the “perfect” score for the metric in question.



Scores, metrics and skill

Economic evaluation

• Forecasts only add value when they lead to better decisions
• Calculating the value ($) of forecast improvement can be difficult or 

impossible! (Various simulation-based approach have been used, most commonly “shadow trading”)

• The utility of forecasts, e.g. situational awareness or risk reduction, may be 
more difficult still to quantify

The IEA Recommended Practice for Forecast Selecting Renewable Power Forecasting Solutions 
suggests a multi-criteria approach:
• Visual Inspection
• Use of multiple metrics tailored to use-case
• Use of histogram or boxplot for evaluation of outliers
• Use of contingency tables for specific event analysis
• Use of skill scores relative to a relevant reference forecast for comparisons



Part 1 Re-cap

Introduction to probabilistic energy forecasting

• Motivation
• Types of probabilistic forecast
• Principles of energy forecasting

• Timescales

• Physical and fundamental methods

• Data-driven methods

• Forecast quality and evaluation
• Decision-making game



Let’s play!

Decision-making under forecast 
uncertainty



Let’s play!

High-speed shutdown game

High-speed shutdown (HSSD)
A high-speed shutdown events typically occur when wind 
speed exceeds 21-27m/s. Individual turbines cut-out above 
25m/s but use both wind gusts and the mean wind to 
determine HSSD, and wind farms contain many turbines...

The Game
Decide in whether to trade 50% or 100% of the generation 
from of an offshore wind farm according to the forecast given 
the possibility of a high-speed shutdown, where the wind park 
stops generating due to excessive wind conditions.



Let’s play!

High-speed shutdown game

First type of forecast

• 3 independent deterministic wind power forecasts in the 
unit [% of installed capacity] based on 3 different NWP 
(numerical weather prediction) models ↗

• 1 wind speed forecast in the unit [m/s] and a reference line 
for the 25m/s threshold reference value for high-speed 
shutdown. ↘



Let’s play!

High-speed shutdown game

Second type of forecast

• 9 wind power percentiles (P10..P90) and a mean (white line) 
in the unit  [% of installed capacity] generated from 75 NWP 
forecasts of a multi-scheme ensemble prediction system↗

• 9 wind speed percentiles (P10..P90) and a mean (white line) 
in m/s] generated from 75 NWP forecasts of a multi-scheme 
ensemble prediction system↘



Let’s play!

High-speed shutdown game
To reflect the costs of large and small errors we have defined a simplified cost function for the period, 
where high-speed shutdown (HSSD) can take place.

Set-up:
⚫ The wind farm capacity is 100MW and the spot market price is 50 EUR/MWh
⚫ Balancing costs are equivalent to spot market prices
⚫ The cost function will only consider your choice for the hours where the actual generation is full load or 

no generation
Outcome

Trade HSSD No HSSD

Decision:
100% -5,000 5,000

50% 0 2,500

Note that trading 100% is a risky choice that can both increase your income and loss. 
The more conservative 50% trading strategy eliminates the risk of a loss, because balance costs are equal to spot market 

prices, and you can curtail the wind farm to avoid balance costs.



Let’s play!

High-speed shutdown game

https://meteorology.mpib.dev/wind-power-decisions
Click: “Play the Game”

Game provided by:
Nadine Fleischhut 
Max-Planck Institute for Human Development
fleischhut@mpib-berlin.mpg.de

Corinna Möhrlen 
WEPROG
com@weprog.com

https://meteorology.mpib.dev/wind-power-decisions
mailto:fleischhut@mpib-berlin.mpg.de
mailto:com@weprog.com


Further reading

Weather Matters for Energy, Eds. A. Troccoli, L. Dubus, S.E. Haupt, 
DOI: 10.1007/978-1-4614-9221-4
Weather and Climate Services for the Energy Industry, Eds. A. Troccoli
DOI: 10.1007/978-3-319-68418-5
Messner et al, Evaluation of wind power forecasts – An up-to-date 
view, DOI: 10.1002/we.2497
Pinson et al, Trading Wind Generation From Short-Term Probabilistic 
Forecasts of Wind Power, DOI: 10.1109/TPWRS.2007.901117


