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Abstract
Wind power forecast evaluation is of key importance for forecast provider selection, forecast
quality control and model development. While forecasts are most often evaluated based on
squared or absolute errors, these error measures do not always adequately reflect the loss func-
tions and true expectations of the forecast user, neither do they provide enough information for
the desired evaluation task. Over the last decade, research in forecast verification has intensified
and a number of verification frameworks and diagnostic tools have been proposed. However, the
corresponding literature is generally very technical and most often dedicated to forecast model
developers. This canmake forecast users struggle to select themost appropriate verification tools
for their applicationwhile not fully appraising subtleties related to their application and interpre-
tation. This paper revisits the most common verification tools from a forecast user perspective
anddiscusses their suitability fordifferent applicationexamples aswell as evaluation setupdesign
and significance of evaluation results.
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1 INTRODUCTION
Wind power has become an important power source in many power systems. In Europe it already covers approx. 12% of the total electricity
demand 1. However, variability and limited predictability of its production challenges power systems and markets, making forecasts required for
optimal operation (e.g. load balancing andmaintenance) and trading. A lot of research has been carried out in the development of wind power fore-
casting models and a variety of models have been proposed for different applications and types of forecasts. These include deterministic point
predictions, probabilistic forecasts of various forms, multivariate predictions or predictions for specific events such as ramps or gusts 2. See e.g., 3
for a general state-of-the-art report on wind power forecasting or 4 for a recent coverage of challenges related to wind power forecasting (and
extension to other renewable energy sources).
One of the current challenges, which is rarely covered and discussed, is forecast verification, maybe since many believe that verification frame-

works arewell-established and forecast users are contentwith their use. Forecast evaluation is crucial formodel development, selection of the best
forecast provider, or for quality control. Some of its main goals include estimation of future error statistics, comparison of the forecast accuracy
of different forecasts, or finding flaws in a certain forecast model. Unfortunately, it is not the case that current knowledge in forecast verification
and existing verification frameworks can give us the whole information about objective quality of forecasts and their value to forecast users. The
original view on forecast quality and value (inspired by meteorological applications) was laid out in the 1980s by 5,6. More recently, this aspect was
discussed by 7 or 8 for the specific case of wind power forecasting.
Evaluation metrics are tools to summarize the characteristics of forecast errors but unfortunately there is no universal metric that can examine

all forecast qualities. The best forecast in one metric can perform poorly with respect to another metric. Therefore, it is essential to select an eval-
uation criterion that well reflects the cost function of the forecast user. E.g., if the cost of an error is directly proportional to the error, the mean
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absolute error is most appropriate. Selecting an inappropriate evaluation criterion can lead towrong conclusions such as the selection of a forecast
provider that is not the best for the intended application 9.
Just like the forecasts themselves, also forecast evaluation exhibits some degree of uncertainty and evaluation results do not always have to

reflect future expectations. E.g., theremight be performance differences between different years or if forecasts are evaluated only for the summer
season the results do not have to be representative for the winter season. Therefore, it is important to design the evaluation setup appropriately
and to be able to quantify and correctly interpret these uncertainties of the results.
In contrast to forecastmodel development, forecast evaluation has not received asmuch attention inwind power forecasting literature. Notable

exceptions are 10, which proposes a standard protocol for forecast evaluation, 7, which examines the evaluation of ensemble forecasts 8, which
discusses the relationship between forecast quality and value, or 11, which discusses evaluation approaches for wind power scenario forecasts.
Nevertheless, performance evaluation has been an important tool in model development and nearly all publications ought to rely on some form
of verification framework to benchmark their own approach. Beyond wind power only, one may find a number of reference works on forecast
evaluation in the general forecasting literature. Examples include 12, 13, 14, 15, 16, 17, 18, or 19.
Traditionally, discussions of forecast evaluation techniques have mainly been considered by forecast model developers and therefore proposed

evaluation approaches are often presented in a technical way and focused on specific problems. In this study we want to review the evaluation
from the perspective of a forecast user, revisit some of themost important evaluationmetrics forwind power forecasting and discuss their usability
for different applications. Furthermore, the evaluation setup and the interpretation of evaluation results is discussed. Thus, this document intents
to become a reference for forecast users when setting up a forecast evaluation procedure. It does not suggest specific procedures or metrics but
rather critically examines the advantages and disadvantages of different approaches so that it enables forecast users to tailor solutions for their
own specific application. As such it complements part 3 of the International Energy Agency (IEA) Recommended Practice on Forecast Solution
Selection 9
The remainder of this document is structured as follows. First, Section 2 demonstrates on a simple example forecast the importance of selecting

a metric that fits to the forecast product, the difference between quality and value, and pitfalls when interpreting results from an inappropriate
evaluation setup. Section 3 summarizes some of the most important evaluation metrics for different kinds of forecasts, including point forecasts,
probabilistic forecasts of binary, multi-categorical, or continuous variables, and multivariate scenarios. Section 4 discusses approaches to set-up
evaluation tasks and interpret their results. Finally, a conclusion can be found in Section 5.

2 PRAGMATIC CONTEXT
In this section, we want to point out typical pitfalls of evaluation procedures on simple forecast example data. Two fairly simple examples are con-
sidered to illustrate the importance of loss functions, forecast verification framework, and the link between quality and value of forecasts. For this
purpose we employ the openly available data set of the GEFCom 2014 wind power forecasting competition 20. This data set consists of 2 years of
hourlywind powermeasurements for 10Australianwind farms (the exact locations have not been disclosed) and corresponding 25–48 hour-ahead
numerical weather predictions of wind speed at 10 and 100meter above ground from the European Centre forMedium-rangeWeather Forecasts
(ECMWF) high resolutionmodel. For the current studywe only used the 100meter wind forecasts at one single wind park. The full data set is avail-
able as appendix to 20. In order to facilitate reproduction and future work, the subset of these data and all the code used to generate the results of
this paper can be downloaded at 21

2.1 A forecast benchmarking example
We first transform the 100 meter wind speed predictions into power generation forecasts using a simple local linear regression model (see e.g. 22).
If we denote the wind power measurement at time t, t = 1, . . . ,N as yt and the corresponding day ahead wind speed predictions as ût this model
can be described by

yt = αi,0 + αi,1(ût − ui) + εt

(1)

where ui, i = 1, . . . ,P are a number of fitting points, εt the forecast error, and αi = (αi,1, αi,2), i = 1, . . . ,P are regression coefficients that
are different for all P fitting points. Thus, separate regression equations are fitted for each fitting point, which are combined depending on the
distance between the respectivefitting points and the actual value of ût. A common choice forfitting points can e.g., be one point for eachm/s. These
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coefficients are estimated so as tominimize the weighted sum of a loss function ρ() over the training data set

α̂i = argmin
αi

N∑
t=1

wtρ(yt − αi,0 − αi,1(ût − ui)) (2)

where the loss function ρ commonly is the squared (quadratic) loss but can be any loss function that ideally should reflect the intended application
of the forecast. Clearly, therefore, if the end-user’s preferred evaluation measure is suitable to be used directly as ρ() then it should be, but this is
not always possible.
The weightswt are defined by a Kernel function,

wt = K

(
|ût − ui|

h

)
(3)

where h is the bandwidth parameter controlling the smoothness of the fit andK can, e.g., be the tricube function

K(v) =

(1− v3)3 v ∈ [0, 1]

0 v > 1
(4)

We fit three different models of this kind with three different loss functions:
• quadratic loss ρ(ε) = ε2,
• absolute loss ρ(ε) = |ε|
• 0.3 quantile loss ρ(ε) = ε (0.3− 1(ε < 0))

Figure 1 shows these loss functions. Compared to the absolute andquantile loss, the quadratic loss strongly penalizes larger errors and compared to
the other loss functions the quantile loss is not symmetric and penalizes negative errorsmore than positive ones. Figure 2 shows example forecasts
for a specific date. The absolute and quadratic error models provide rather similar forecasts with the absolute loss model predicting slightly lower
power generation on average. The forecasts of the quantile loss model are even lower, which leads to less negative errors that are weighted higher
than positive errors.
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FIGURE 1Quadratic (left), absolute (center), and quantile (right) loss functions ρ(ε). Note the different scale on the y-axes.

These three models are fit on the first 10000 entries of the GEFCom2014 data set and are used to generate forecasts for the remaining 6789
entries. These forecasts are evaluated using 3 different evaluation metrics which are the mean over the test data set of the 3 loss functions listed
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FIGURE 2 Example 24 hour forecast from different forecast models for 2013-11-30.

MSE MAE QS
quadratic 3.46 14.27 7.27
absolute 3.46 13.54 6.61
quantile 4.63 15.29 5.67

TABLE 1Different evaluation measures for the three local linear models with quadratic, absolute and quantile loss function. All scores are in their
normalized version, hence expressed in percentage of nominal capacity. The best model for each score is highlighted in bold.

above: the mean squared error (MSE), the mean absolute error (MAE) and the quantile score (QS) – to be introduced and thoroughly discussed in
Section 3. Table 1 summarizes these evaluation results.
Thinking about how models were fitted and based on the intuitive match between loss functions for model fitting and verification, it is not sur-

prising that eachmodel performs best in themetric that was used in themodel fitting. Nevertheless, these results show three important aspects of
forecast evaluation:

1. the ranking of forecasts clearly depends on the chosen metric and based on a single metric it is not possible to define a forecast that is best
for all possible applications

2. to achieve the best possible results it is important for forecast providers to know the actual loss function
3. it is important for the forecast users to know their loss function of forecast errors. First, the forecast providers can only then optimize their
models to this loss function and when evaluating different providers, a wrong metric could lead to choosing not the most suitable one for a
specific application.

In the above example, the forecast performance is measured on a rather big data set (i.e., a test dataset with 6789 forecast-observation pairs).
However, often not as many data are available and performance has to be measured on smaller data sets. Table 2 shows the same performance
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measures as Table 1 but only using the first 200 time steps of the test data set. Since forecasts are updated hourly, 200 time steps translates to
approximately 8 days. However, if forecastswere updated daily or twice daily, thiswould translate to period of 6months and3months, respectively.

MSE MAE QS
quadratic 3.14 12.93 5.87
absolute 3.68 13.97 5.87
quantile 4.55 15.97 5.35

TABLE 2 Same as Table 1 but only derived from the first 200 time steps of the test data set

It can be seen that this clearly changes the ranking of the different models so that the quadratic loss function ranks best in terms of MSE and
MAE, even thoughwe know from construction that the absolute loss functionmodels should be preferred by the latter metric. The problem here is
that a data set length of 200 is not sufficient to draw final conclusions based on score differences, especially for a highly temporally correlated data
set such as the one used here, which is typical of wind power data. Evaluation results based on a finite data set are always subject to some degree of
uncertainty and the best ranked forecast does not necessarily have to be the truly best one. Depending on the actual setup, e.g., in a benchmarking
exercise to hire a forecaster, it should be remembered that even periods of several months may still yield uncertainty in terms of who the best
forecaster truly is.

2.2 Amaintenance planning example
Let us now assume these forecasts are used for turbine maintenance planning for which an hour with zero production or wind speeds below cut
in speed (e.g., 3 m/s) is required. Additional to the models above, we want to use a forecast directly based on the 100 meter wind speed numerical
prediction, which forecasts conditions suitable for maintainance when the numerical prediction falls below 3m/s.
Table 3 shows the contingency tables (to be introduced and thoroughly discussed in Section 3.2.1) for this simple model and the absolute loss

function model from the previous subsection. Since the absolute loss model predicts zero generation very rarely (only four times in the whole
test data set) it is not of much value for this application and only predicts one event, suitable for maintenance, correctly. Thus, even though the
local linear model is clearly more advanced and predicts the correct outcome (correct positive and negative) more often (6192+1=6193 versus
5890+206=6096), it is not of much value for this specific application and inmost practical applications easily outperformed by the direct numerical
model output. This example shows that the value of a forecast clearly depends on the intended application and that not always the forecastwith the
best quality is the one that has the highest value.

absolute loss model direct model output
FALSE TRUE FALSE TRUE

FALSE 6192 3 5890 305
TRUE 593 1 388 206

TABLE 3 Contingency tables for forecasting zero wind power with a local linear regression model with minimized absolute loss (left) and with the
direct numerical model output (right). Rows are for observations (TRUE or FALSE) and columns for forecasts (TRUE or FALSE)

3 EVALUATIONMETRICS
Forecast evaluation is oftenused to test if forecasts are reasonable and toanalyse their performance in various situations,which canhelp to improve
the forecast models. This is often referred to as forecast verification and is usually done by employing different metrics or graphical representa-
tions. Furthermore, forecast evaluation is necessary to compare different forecasts to each other, for example to select the best forecast provider
for a specific application. In principle, the same metrics as for verification can be used, however, usually single valued metrics or scoring rules are
preferred to graphical devices. Since this paper mainly focuses on forecast comparison, wewill mainly regard single valuedmetrics but also cover a
few useful important graphical verification devices.
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In the following we list a number of scoring rules. This is clearly only a selection of the most widely used metrics and is not a comprehensive
list. We also omit to describe theory about desired properties of scoring rules, such as the importance of being proper and refer to e.g., 23 for more
details.
This section is divided into subsections for different forms of forecasts. The first subsection focuses on deterministic point forecasts (single

valued forecats), the second subsection treats probability forecasts for binary events and the last two subsections presentmetrics for distributional
probabilistic forecasts in the uni- andmultivariate case respectively.

3.1 Single valuedwind power forecasts
This subsection compares a set of single valued forecasts ŷt, t = 1, . . . ,N to corresponding observations yt, t = 1, . . . ,N. Clearly, a good forecast ŷt
should be as close to yt as possible. Here, various approaches are listed tomeasure the distance between forecasts and observations, i.e. the quality
of a forecast.

3.1.1 Bias
The bias (i.e., mean or systematic error) is defined as

Bias =
1

N

N∑
t=1

(ŷt − yt) (5)
andmeasures the average difference between the forecast and observations, which can easily be seenwhen reformulating (5) as

Bias =
1

N

N∑
t=1

ŷt −
1

N

N∑
t=1

yt, (6)
As an illustration, Figure 3 shows example observations, two different forecasts and their averages. Forecast 1 has very little correlation to the

observations (correlation coefficient<0.02) but has the same average as the observations and thus a very small bias of 0.01. In contrast, Forecast 2
predicts the evolution of the observations perfectly accurately but is always 0.2 too low, which results in a bias of−0.2.
Thus, the bias only measures the ability of a forecast to predict the right average level but does not give any information about the forecasts

ability to predict specific events (commonly referred to as resolution or discrimination ability). Since a known bias can easily be corrected by adding
a constant, a low bias should bemore seen as a necessary condition than a forecast quality measure.

3.1.2 (Root) mean squared error - (R)MSE
Themean squared error is defined as

MSE =
1

N

N∑
t=1

(ŷt − yt)2 (7)
andmeasures themean squared distance between forecasts and observations. The root mean squared error

RMSE =
√
MSE (8)

contains the same information but has the same physical unit as the observations and forecasts (e.g. kW for wind power).
Since errors contribute to theMSE quadratically, larger errors are penalized strongly (see also Figure 1). Therefore, this errormeasure is partic-

ularly useful for applicationswhere large errors are related to high costswhile small errors lead to relatively low costs. Despite the popularity of this
error metric, there actually exist almost no examples in wind power applications that follow such a cost function. One example could be the cost of
reserve energy available to power system operators, which typically becomes more expensive the more is required. In this case, the costs incurred
as a result ofwindpower forecast errorswill not be in proportion to the size of the errors; however, itwill likely not be symmetric or quadratic either,
andwill change over time. In general it is farmore common for costs to be in proportion to the size of a forecast error (perhaps asymmetrically, as in
quantile loss), or discrete based on thresholds, than in proportion to the squared error.

3.1.3 Mean absolute error -MAE
Themean absolute error is defined as

MAE =
1

N

N∑
t=1

|ŷt − yt| (9)
and measures the mean absolute distance between forecasts and observations. In contrast to the RMSE errors are penalized proportionally (see
also Figure 1). Hence, it is well suited for applications where the cost of errors is directly related to its magnitude. For example, the economic
consequence of a forecast error may be the product of forecast error and some price-per-unit. This is more common in contractual arrangements
between forecast vendors and their customers (or regulators) than in energymarkets.
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FIGURE 3 Example time series of observations and two different forecasts (solid lines) and their averages (dashed lines)

3.1.4 Quantile score - QS
The quantile score alsomeasures the absolute error but weights it differently whether the error is positive or negative. It is defined as

QS(p) =
1

N

N∑
t=1

(ŷt − yt) (1 (yt ≤ ŷt)− p) (10)

where 0 < p < 1 is the weighting of positive errors (i.e. yt > ŷt) while negative errors are weighted with 1 − p. The right panel in Figure 1 shows
the contribution of errors exemplary for p = 0.3.
Thismetric is called quantile score because it can be shown that it isminimized by the p-quantile of the predictive distribution. The quantile score

should be used in situations where it is known that the costs of positive and negative errors differ such as in dual-price electricity markets, where
the economic cost of over-contracting is usually less than for under-contracting. In this situation the expected cost is minimized by deliberately
over-contracting in order to reduce exposure to large costs at the expense of increasing exposure to small costs, as in 24.

3.1.5 Economic value and decisionmaking
As already noted in the description of the different metrics above, there are certain situations or applications that suit certain metrics very well.
Before selecting a metric to base a forecasting model on, it is therefore important to know the expected costs related to inevitable forecast errors.
Clearly, in many situations the cost function is more complex and cannot be directly described by any of the above metrics but if it is known, it can
directly serve as a metric and so directly reflect the economic value of a forecast. Where the economic cost takes the form of a cost-loss ratio, the
optimal decision is a quantile, andMurphy diagramsmay be used to evaluate and visualise the range of all economic scenarios 25.
However, in many situations the cost function is not clear, is effected by many other factors, can vary over time or a forecast may be used for

different applicationswith different cost functions. In such a situation, decisions should be based on a combination of differentmetrics such as Bias,
MAE, RMSE, quantile scores for different values of p, and potential other single valuedmetrics.
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TABLE 4Contingency table

Forcast
Observation yes no

yes hits false alarms
no misses correct negatives

3.2 Forecasts of binary events
Often forecast users are interested in the occurrence of specific events and want accurate forecasts of them. Examples could be ramps or cut-
outs. Modern forecast systems usually provide probabilistic forecasts for such events, e.g., the probability of cutting-out between 10am and 11am
tomorrow. The forecast users then have to decide for themselves at what probability threshold they want to take action. This threshold should
be related to the costs of an action and the loss in case no action has been taken and it can easily be shown that usually the expected revenue is
maximizedwhen action is takenwhenever the predicted probability exceeds the cost loss ratio.
There are two main approaches to evaluate such forecasts. First, metrics such as the Brier score or the area under the receiver operating char-

acteristic curve (ROC, see below) can be used to directly measure the accuracy of the probabilistic forecast. Alternatively, the forecasts can be
evaluated based on the actions that have been taken, thus directly reflecting the economic value of the forecast.
In the following let ẑt, t = 1, . . . ,N be a probability forecast (0 ≤ ẑi ≤ 1) for the observation zt, which has the value 1when the considered event

occurs and 0 if not.

3.2.1 Contingency table and derivedmetrics
Let us consider the cost loss function is well known and thus a threshold th can be defined to take action. Then the forecast probabilities ẑt can be
transformed into binary forecasts

ẑ∗t =

1 if ẑt > th

0 else
(11)

A contingency table summarizes the quality of the forecast by displaying the number of
• hits – forecast event to occur, and did occur
• misses – forecast event not to occur, but did occur
• false alarms – forecast event to occur, but did not occur
• correct negatives – forecast event not to occur, and did not occur
Table 4 illustrates the construction of a contingency table and Table 3 shows 2 examples.
Contingency tables can give a nice overview over the forecast performance but are difficult to use for forecast comparison. Therefore several

different single valuedmetrics can be derived from it. Examples are the hit rate (HR)
HR =

hits
hits+misses (12)

or the false alarm rate (FAR)
FAR =

false alarms
false alarms+ correct negatives (13)

Similarly, scores such as accuracy, bias score, threat score, Peirce’s skill score, orHeidke skill score canbederived from theentries in the contingency
table. For more details see e.g., 12.
If the cost of action (C) and the loss in case of no action (L) are known, they can be used to directly derive the costs related to a forecast.

C(hits+ false alarms) + L(misses)
N

(14)
whereN = hits+ false alarms+misses+ correct negatives.
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FIGURE 4 Example ROC plot. The thick black line shows the ROC curve while the diagonal thin line shows the ROC of a forecast with no skill. The
area under the curve is shown in red shading.

3.2.2 Receiver operating characteristic (ROC)
If the cost loss function is not knownor not constant over time it can be better to directly evaluate the probabilistic forecast.One commonapproach
to do so is the receiver operating characteristic (ROC). The ROC is a plot of the hit rate (HR; Equation 12) versus the false alarm rate (FAR;
Equation 13) and by connecting a number of points for different probability thresholds th a curve is drawn that starts at (0,0) and ends at (1,1).
Figure 4 shows an example ROC curve.
A well performing forecast should have a high hit rate and a low false alarm rate so that the curve should lie as much in the upper left corner of

the plot as possible. Randomly forecasting probabilities between 0 and 1 (forecast with no skill) would lead to a diagonal ROC curve.
To compare forecast models to each other, it is common to derive the area under the ROC curve which summarizes in a single value how far the

ROCcurve is away from the no-skill diagonal. However, it should be noted thatwhen evaluating probabilistic forecasts, ROC curves andAUCdo not
consider reliability and therefore should be accompanied by reliability diagrams 26.

3.2.3 Brier score - BS
The Brier score is given by

BS =
1

N

N∑
t=1

(ẑt − zt)2 , (15)
which is equivalent to the mean squared error in Equation 7 but for probability forecasts ẑt and binary observations zt instead of continuous
variables.
The Brier score can take values between 0 and 1 with smaller values indicating better forecasts. 27 showed that the Brier score can be

decomposed into reliability (REL), resolution (RES ), and uncertainty (UNC )
BS = REL− RES +UNC (16)

Reliability denotes the property of a forecast to be in line with the conditional relative frequencies of the observations, i.e., in the long run an event
should occur in 40% of the cases the probability forecast is 40%. Resolution is the property of a forecast to discriminate between situations, i.e., a
forecast that has almost the same value every day has a bad (low) resolution. Uncertainty is the base uncertainty in the outcome of the considered
event and is independent from the forecast. This decomposition can be very useful to examine the forecast performance and find where forecast
models have problems.
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FIGURE 5 Example reliability diagram. The gray bars show consistency bars as in 29 and the refinement distribution is plotted in the lower right
corner.

3.2.4 Reliability diagram
As written above, reliability is the property of a probabilistic forecast to predict probabilities that fit to the relative frequencies in the data. A
probabilistic forecast that is not reliable can lead to wrong decisions when the predicted probabilities are interpreted directly. As such, it should be
seen as a necessary condition of a good probabilistic forecast, similar to the bias for deterministic forecasts.
As shown in Section 3.2.3 the reliability can be assessed as a part of the Brier score. Alternatively, reliability diagrams are related graphical

devices that can be used for assessing the reliability of binary probabilistic forecasts. In reliability diagrams, the observed frequencies are plotted
against thepredictedprobabilities. Therefore the interval (0, 1) is divided into several subintervals and relative frequencies conditional on forecasts
falling in each of these intervals are plotted against the interval center ormedian. For reliable forecasts, observed and predicted frequencies should
be similar so that their reliability diagram should be close to a diagonal line.
Traditionally, reliability diagrams also contain a refinement distribution subplot which show histograms of the predicted probabilities e.g., 28.

These show the confidence of a forecaster, which is high if probabilities close to 0 and 1 occur frequently and is lowwhen the predicted probabilities
are always similar. The refinement distribution can also be used to estimate the expected sampling variation of the reliability diagram. If there are
only few data in one subinterval this variation is expected to be higher than for well populated intervals. 29 proposed another approach to estimate
this sampling variability, based on consistency bars that show the potetnial deviation of actually perfectly reliable forecasts due to limited sampling.
This concept of consistency barswas then generalized by 30, arguing that it is not only limited sampling, but also correlation, that affect estimates of
reliability. This ought to be accounted for when estimating and visualizing consistency bars.
Figure 5 shows an example reliability diagramwith consistency bars and refinement distribution. In this example, the reliability diagram is close

to the diagonal but falls outside the bootstrap confidence intervals in some of the bins.

3.3 Probabilistic forecasts of continuous variables
Probabilistic forecasts have been shown to be beneficial for various decision making processes in wind power applications e.g., 31,24,32,33 and there-
fore arebecomingmoreandmorepopular. Thus, nowadaysmany forecast providers offer probabilisticwindpower forecasts in the formofquantiles
(perhaps in the form of prediction intervals, which are just specific quantiles), ensembles (set of possible scenarios), or full parametric distributions.
The advantage of probabilistic forecasts is that they provide information about the forecast uncertainty and allow to take this into account for deci-
sionmaking. Sometimes, probabilistic forecasts are usedoptimally by taking specific quantiles as point forecasts, whichmaximize the revenue. If the
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FIGURE 6 Example verification rank histogram for a 10member ensemble based on a data set length of 500. Perfect reliability is shown as red line.

required quantiles are not provided directly, they can be easily derived from full continuous probabilistic distributions, by interpreting an ensemble
as a set of quantiles, or by interpolating between quantiles. In such a case, a straightforward way to evaluate the accuracy of the forecast is to use
the quantile score (see Section 3.1).
Unfortunately, decision making processes based on probabilistic forecasts are often much more complex and sometimes made manually and

basedonvarious inputs, not only thewindpower forecast. In such a case, the full forecast distribution should be evaluated. There has been anumber
of metrics proposed for probabilistic forecast evaluation and belowwe list themost important ones.

3.3.1 Verification Rank histogram and Probability integral transform (PIT) histogram
The Verification Rank histogram and PIT histogram are closely related graphical devices that are commonly used to examine the reliability of prob-
abilistic forecasts. Reliability again denotes the property of a probabilistic forecast to be in line with the relative frequencies of observations, i.e., in
the long run 20% of the data should fall below the 20% quantile.
The verification rank histogram is used to examine the reliability of ensemble forecasts by counting the number of observations falling in the

different intervals that are specified by the ensemble forecasts. This is equivalent to a histogram of the ranks of the observationswithin the ensem-
ble forecasts thus the name verification rank histogram. If the ensemble forecast is reliable, the verification rank histogram should be flat. Figure 6
shows an example verification rank histogram. Note that here the deviations from perfect reliability are most probably an effect of sampling
variations and that the forecast here can be regarded as reliable.With a longer data set the histogramwould becomemore andmore flat.
A similar plot can also be drawn for forecasts that are given as a set of quantiles. Though, depending on which quantiles are given, the histogram

does not have to be flat but should follow the nominal probabilities of the different intervals.
PIT histograms are the continuous counterpart of verification rank histograms and show the distribution the probability integral transform,

which is
PIT t = F̂t(yt) (17)

where F̂t(yt) is the predicted cumulative distribution function. If the forecasts are well calibrated and reliable, the PIT histogram should be flat as
well. Note thatwhen discrete cumulative distribution functions are derived fromensemble forecasts, the resulting PIT histogram is almost identical
to the verification rank histogram only with a different scale on the x-axis.
Reliability is a crucial property of probabilistic forecasts. Unreliable forecasts can lead to not ideal decisions and thus to financial loss. Looking at

rankorPIThistograms should thereforebeoneof thefirst steps in evaluating probabilistic forecasts and if theydeviate significantly fromuniformity
the forecasts should be calibrated or only be usedwith care.
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FIGURE7Schematic plot for thederivationof the continuous rankedprobability score. Theblack curve shows thepredicted cumulative distribution
function and the red curve indicates the step function 1(x ≤ yt). The difference between these two lines is shown as red shaded area.

Reliability should also be seenmore like a property a forecast has or does not have and the reliability of different forecasts should in general not
be ranked.

3.3.2 Continuous ranked probability score
The continuous ranked probability score is one of the most common single value scores to evaluate the accuracy of probabilistic forecasts of
continuous variables. It evaluates the quality of the predicted cumulative distribution function and is defined as

CRPS =
1

N

N∑
t=1

∞∫
−∞

[
F̂t(x)− 1(x ≤ yt)

]2
dx (18)

where 1(x ≤ yt) is the indicator function that is 1 if x ≤ yt and 0 otherwise. Figure 7 shows a schematic plot for the derivation of the CRPS. The
CRPS for a specific forecast occasion is the integral of the squared distances between the cumulative distribution function and the step function
defined by the observed value. Therefore it is not directly the shaded area in Figure 7 but related to it.
Note that the integrand in Equation 18 can be interpreted as a Brier score (Equation 15) so that the CRPS can be seen as the integral over the

Brier score. There are also other equivalent definitions of the CRPS, e.g. 34,

CRPS =

1∫
0

F̂−1
t (τ)− yt)

(
1
(
y ≤ F̂−1(τ)

)
− τ
)
dτ, (19)

which shows that the CRPS is also closely related to the quantile score (Equation 10), which is equal to the integrand in Equation 19. Another
definition proposed by 23 is

CRPS =
1

N

N∑
t=1

[
1

2
E|Ŷt − Ŷ ′t | − E|Ŷt − yt|

]
(20)

whereE|·|denotes the expected value and Ŷt and Ŷ′t are independent copies of a randomvariablewith distribution function F̂t. From this definition,
a formula for forcasts given as ensembles or quantiles can be easily derived as

CRPS = 1

N

N∑
t=1

[
1

M

M∑
m=1

|ŷ(m)
t − yt| −

1

2M2

M∑
m=1

M∑
l=1

|ŷ(m)
t − ŷ(l)t |

]
(21)

where ŷ(m)
t ,m = 1, . . . ,MM are ensemblemembers or predicted quantiles.
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FIGURE 8 Score contributions of observations to the same example forecast distribution as shown in Figure 7. The black and red curves shows
contributions to the CRPS and ignorance score, respectively.

35 showed that the CRPS, similar to the Brier score, can be decomposed into reliability, resolution and uncertainty.
Figure 8 shows the CRPS contributions of different observations. It can be seen that, except close to the distribution mean, deviations from the

distributionmean contribute almost linear to the CRPS. This is comparable to themean absolute error (see Figure 1) and in fact, for a deterministic
forecast (i.e., the predictive cumulative distribution function is a step function as well), the CRPS and themean absolute error are equivalent.

3.3.3 Ignorance (logarithmic) score
The ignorance score, also called logarithmic score is defined as

IS =
1

N

N∑
t=1

log(f̂t(yt)) (22)

where f̂t(yt) is the predicted probability density function evaluated at the value of the observation yt. Since a probability density function can not
easily be derived from quantiles or ensembles, the ignorance score is only applicable for full continuous distribution forecasts.
As it can be seen in Figure 8 the ignorance score penalizes deviations from the distribution center muchmore heavily than the CRPS. In the case

of a normal predictive distribution the ignorance score is, up to a factor, equivalent to the squared loss. Similar to the choice betweenmean absolute
error and (root) mean squared error, the ignorance score should be preferred if large forecast errors are related to very high costs.

3.4 Multivariate probabilistic forecasts
Multivariate forecasts are usually provided as a set of scenarios that are consistent in time and/or space and consider the spatio-temporal corre-
lations. E.g., these could be a set of possible realizations for the 24 hours of the next day. Multivariate forecasts are important in short-term wind
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power forecasting and therefore have become popular in the wind power literature. For example, 36 showed that when considering forecasts for a
set of wind power production sites, properly accounting for spatio-temporal inter-dependence between neighbouring sites results in a reduction in
prediction errors compared to simply issuing independent forecasts of individual sites.
Similar to other forecast formats, multivariate forecasts are, depending on the application, used for decision making. Multivariate forecasts

could e.g., be used to estimate the probability that a threshold is exceeded within a certain time period or that the accumulated wind power in a
region exceeds a certain threshold. In such situations, these derived forecasts can be evaluated directly with evaluation metrics from the previous
subsections 11. However, it is also possible to evaluatemultivariate scenarios directly using e.g., one of themetrics presented below.
In the following we present some of the most popular multivariate scoring rules.However, multivariate forecast evaluation is still a very active

research field and it is possible that other, perhaps better evaluation metrics will becomemore popular in the near future. We denote multivariate
observations as vectors yt, which can contain a set of forecasts for different locations, different lead times, or both. Multivariate forecasts are
usually provided as set ofM scenarios inK dimensions ŷ(m)

t = (ŷ
(m)
t,1 , ŷ

(m)
t,2 , . . . , ŷ

(m)
t,K )>,m = 1, . . . ,M.

3.4.1 Multivariate ignorance or Dawid-Sebastiani score
Similar to the univariate case, multivariate forecasts could be evaluated based on the algorithm of their multivariate density function f̂t(yt)

IS =
1

N

N∑
t=1

log(f̂t(yt)) (23)
However, usually multivariate forecasts are not provided in parametric form but rather as a set of possiblemultivariate scenarios. In such a case,

the closely relatedmultivariate Dawid-Sebastiani score 37 can be used
DS =

1

N

N∑
t=1

[
log(det Σ̂t) + (yt − ŷt)

>Σ̂−1
t (yt − ŷt)

] (24)

where ŷt is the mean and Σ̂ the covariance matrix of the forecasts ŷ
(m)
t and det Σ̂t is the determinant of Σ̂t. The Dawid-Sebastiani score is

equivalent to the ignorance score for a predicted multivariate normal distribution with mean ŷt and covariance Σ̂. Thus, it is the ignorance score
assuming themultivariate scenarios are samples from amultivariate normal distribution and estimating the distribution parameterswithmean and
covariancematrix. For wind power this assumptionmight not always hold.
Similar as the univariate ignorance score, its multivariate version penalizes unlikely observations, i.e. misidentified tails, very hard, whichmay or

may not be desired depending on the problem of consideration.

3.4.2 Conditional likelihood and censored likelihood score
In order to maintain the nice properties of the multivariate ignorance score while damping the penalty associated with unlikely observations (cf.
above), 38 proposed two scores that accomplishes exactly that. LetA be a subset of the sample space of the forecast, such that observations that fall
outsideA, i.e. inAc are denoted "unlikely observations". The simplest of the two scores is the conditional likelihood score,

CDLS = 1

N

N∑
t=1

I(yt ∈ A) log
(

ft(yt)∫
A ft(u)du

)
(25)

which is the ignorance score only evaluated for observations within A. Hence, this can be used to exclude unlikely observations from the forecast
evaluation. The other score in question is the censored likelihood score,

CSLS = 1

N

N∑
t=1

I(yt ∈ A) log ft(yt) + I(yt ∈ Ac) log
( ∫
Ac

ft(u)du
)

(26)

Under this score, observations that fall outsideA are still evaluated. The penalty for each unlikely observation is then based on the total probability
mass on Ac rather than on the probaility of the unlikely observation itself (as is the case for the ignorance score). Hence, unlikely observations are
penalized in amore robust manner than in the ignorance score.

3.4.3 Multivariate continuous ranked probability or energy score
As for the ignorance score, the CRPS can also be extended to cover multivariate scenarios, which has been proposed under the name energy score
by 23

ES = 1

N

N∑
t=1

 ∞∫
−∞

(F̂t(x)− 1(x ≥ yt))
2dx

 (27)

where F̂t() is the predictedmultivariate cumulative distribution function.
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If the forecasts are given as a set of scenarios, the formula

ES = 1

N

N∑
t=1

[
1

M

M∑
m=1

||ŷ(m)
t − yt|| −

1

2M2

M∑
m=1

M∑
l=1

||ŷ(m)
t − ŷ

(l)
t ||

]
(28)

can be usedwhere ||d|| is the Euclidean norm.
Similar to the univariate case, the CRPS does not penalize unlikely observations as strongly as the ignorance score.

3.4.4 Variogram score
11 showed that theenergy score is not very sensitive tomisspecification in themultivariate correlation structure andputsmostweight on thequality
of the marginal distributions. In applications where the correlation structure is important this can be undesirable. As an alternative score that puts
more weight on the correlation structure, 39 proposed the variogram score

VSp =
1

N

N∑
t=1

 K∑
i=1

K∑
j=1

wij(|yt,i − yt,j |p − E[|Ŷt,i − Ŷt,j |p])2
 (29)

where yt,i, i = 1, . . . ,K are the components of the multivariate observations yt = (yt,1, yt,2, . . . , yt,K)
>, Ŷt,i, i = 1, . . . ,K are components of a

random vector Ŷt that are distributed according to a forecast distribution F̂t(yt), andwi,j are nonnegative weights that can be assigned if desired.
p is the order of the variogram score and affects how closely the distribution of |Ŷt,i − Ŷt,j|p attains symmetry. 39 thus found p = 0.5 to be optimal
for model separation. If the forecasts are provided as scenarios, E[|Ŷt,i − Ŷt,j|p] can be replaced by 1

M

∑M
m=1 |ŷ

(m)
t,i − ŷ

(m)
t,j |

p.
The scores ability to distinguish betweenmodels in terms of their correlation structure becomesmore apparentwith increasing dimensions, and

the computation time is quadratic, making it relatively fast and applicable for high-dimension scenarios compared to the available alternatives such
as the ignorance score. Themain downside of the score is that it does not cover calibration at all, i.e. differentmodelswith different expectations but
identical correlation structureswill be scored equally. Therefore, use of the variogram scoremay be supplemented by univariate CRPS or ignorance
scores tomake sure calibration and sharpness of themarginal distribtuions are addressed as well.

4 EVALUATION SETUP
As pointed out in Section 2 an appropriate setup is required to getmeaningful evaluation results and since these results are subject to uncertainty it
is important to knowhowto interpret them. This sectionfirst regards different aspects andapproaches for setting upanevaluation task such as data
preparation or data set size. Subsequently, different approaches are presented to estimate the significance of evaluation results, which, for many
decisions, can be as important information as the results themselves. An evenmore practical oriented discussion on this topic can also be found in 9.

4.1 Data preparation/missing data/corrupt data
Evaluation results are highly dependent on the data set on which the evaluation is performed. Therefore it is important to use an appropriate data
set for evaluating wind power forecasts. First, it is crucial that the selected data set is representative for the application the forecasts are supposed
to be used for. E.g., the data set should cover all seasons, times of day, locations, etc. that they are planned to be used for or at least to a subset of
these that is known to be representative. Second, the data set should be long enough for the results to bemeaningful. Evaluation results are always
subject to uncertainty, which increaseswith smaller data sets. In the case of small data sets it can therefore be difficult to see significant differences
between competing forecastmodels. For limited data sets, cross validation approaches (see Section 4.2) can help to obtainmoremeaningful results.
Another aspect to consider is the aggregation of lead times. If forecast users are interested in the overall performance of a forecast model they

may choose to evaluate all lead times at once. If forecasts for different lead times are used for different applications (e.g., trading in intraday and day
ahead markets), forecast errors at different lead times are related to different costs, or users have the possibility to use different forecast models
for different lead times it makes sense to evaluate forecast performance on lead times or subsets of lead times separately.
When comparing different forecasts to each other it is crucial to use exactly the samedata sets. Results of different locations, seasons, lead times

etc. are in general not comparable. If a certain forecast is not available for a specific time, this time has to be disregarded for all the other forecasts
as well. Else, if e.g., forecasts are missing for days that are particularly difficult to predict, they would in total perform much better than forecasts
that are expected to have high errors at these days.
Another important decision to bemade is whether curtailment data should be kept or removed from the data before evaluation. Again this deci-

sion should bemade based on the intended application. If the forecast user is interested in the available power and not in the real power production,
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FIGURE 9 Schematic illustration of 6-fold cross validationwith temporally contiguous blocks. The top box illustrates the full data set where the red
blocks show the part of the data that is used for training the forecastmodel. The bottom row illustrates the forecastswhere the blue block is the one
that is predicted by the model that has been trained on the red blocks above. By repeatedly leaving out different blocks, independent predictions
for the full time series can be derived.

datawith curtailment should be removed from the evaluation data set since errorswhen not predicting these cases are notmeaningful for the fore-
cast performance. If periods of curtailment are retained, it may be instructive to separate errors that resulted from unforeseen curtailment from
those that resulted from others as average scores will conflate these effects.

4.2 Cross validation
In all evaluation tasks, it is of crucial importance to have independent training and test data sets,meaning that the data onwhich forecastmodels are
evaluated should never be used in the model development. This is also reflecting a real forecasting task where the forecasted data is not available
for developing themodel. Violating this important condition can lead to very wrong conclusions. Often, only a limited data set is available on which
the forecast models have to be trained and evaluated. Simply separating these data into two sets can on the one hand limit the training data such
that the forecast models loose accuracy and on the other hand limit the test data such that the evaluation results are less meaningful and might be
influences by few unusual events.
Cross validation is a frequently used tool to assure independence but still make efficient use of the available data. There are different cross

validation approaches but all of them use the basic idea of repeatedly training the models on a major part of the data and evaluate them on the
remaining part. By repeating this for different subsets, the evaluation results become less variable even if the actual test data part is small.
Cross-validation types for a data set of lengthN :
• k-fold cross validation is probably themost frequently used approach for wind power forecast evaluation. The original data set is split into k
equally sized subsets. Then forecasts for each of the subsets are derived frommodels trained on all data leaving out the subsets that are to
be forecasted. After repeating this for all partitions, independent predictions for the full data set are available for evaluation.

• leave-one-out-cross validation: derive independent forecasts for all N data points by fitting Nmodels on the data set, leaving out the data
point that is to be predicted. Similar to k-fold cross validation this results in independent forecasts for the full data set but requiresN times
fitting themodels.

• leave-p-out cross validation: similar to leave-one-out but derive forecasts for a set of p events by leaving out those in fitting the model.
Usually this is repeated on all ways to cut the full data set, so that the model has to be fitted (N

p

) times where (N
p

) is the binomial coefficient.
Different to k-fold cross validation and leave-one-out cross validation each data point is predictedmultiple times.

• random subsampling: randomly assign data to a train and a test data set and repeat this several times.
Since in wind power forecasting evaluation, model fitting often is rather computationally expensive, k-fold cross validation is usually preferred

to leave one-out or leave-p-out cross validation. Another advantage of k-fold cross validation is, that temporal blocks can be selected as partitions
thus avoiding problems with temporal correlations (see below). For the same reason also random subsampling is usually avoided. Figure 9 shows
the cross validation procedure schematically.
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4.2.1 Temporal correlation
Cross validation assumes that the statistical properties of the dataset stay constant with time so that using future data for training is equivalent
to using past data. However, wind power data is usually temporally correlated, which often implies that data that is temporally close to each other
often behave similar. Thus, if the data just before and after a specific data point is used for training, the forecasts are not entirely independent and
can lead to wrong conclusions. Therefore, leave-one-out cross validation can be problematic and in k-fold cross validation the partitions should be
selected in temporally connected blocks and not randomly sampled.
When a sufficiently large dataset is available, it may be preferable to simulate operational forecasting and model re-training on a rolling basis.

For example, training amodel on thefirst 12months of data and predicting the 13thmonth, and then re-training themodel using thefirst 13months
and predicting the 14th, and so on. This structure is inherent to some forecastingmethodologies that are explicitly adaptive 22.

4.3 Comparing forecast performance
Most of the time forecast evaluation is used to compare different forecast models to each other, e.g., to select the best model for the intended
application. Clearly one could simply compare one or several of the performance measures presented in Section 3 and rank the forecast mod-
els accordingly. However, evaluation results are always subject to uncertainty and should therefore interpreted carefully. Figure 10 shows mean
squared error results for the example forecasts in Section 2 from different subsets of the test data set. Even though, the forecast model with quan-
tile loss optimization seems to perform slightly worse there are subsets where it shows bettermean squared errors than some of themean squared
errors of the other models. The right panel in Figure 10 shows that the sampling variation becomes a bit lower for larger subsamples.
The remainder of this section presents different approaches to estimate the evaluation result uncertainty and the significance of performance

differences.

4.3.1 Skill scores
Before regarding the uncertainty of evaluation results we want to introduce skill scores. In the boxplots in Figure 10 a number of mean squared
errors are shown for different subsets of the data. Themean squared errors of the quadratic and absolutemodels are not always lower than that of
the quantile model but in fact we cannot say from the figure whether the quantile model is expected to be always worse or not. Possibly, there are
subsets where all models perform equally bad and the variation we see is not caused by variation in the ranking of themodel but by the variation of
the subset data.
To investigatemodel differences, one should therefore regard error differences or skill scores. A skill score of ametricM is defined as

Mref −M
Mref −Mperf

(30)
withMref the score of a reference method andMperf the score of a perfect forecast. Skill scores show the score improvement of a forecast model
compared to a referencemodel where positive values indicate an improvement. Often, basic forecast models such as the long term (climatological)
mean or persistence are use as reference but when e.g., a new forecast model should be tested against the one currently in use it makes sense to
use the current model as reference.
For manymetrics the perfect score is 0, so that often the form

1−
M

Mref
(31)

is used. Note also that for somemetrics such as the logarithmic score, the perfect score is not finite so that no skill score can be derived.
Figure 11 left shows the same results as the right panel in Figure 10 but as skill scores with the quadratic loss model as reference. Clearly the

quadratic model has skill score 0 itself but compared to Figure 10 it can be clearly seen that the quantile loss model performs worse than the
quadratic in all evaluation subsets, which is in themedian even around 30%worse.

4.3.2 Bootstrapping
Analyses such as shown in Figure 10 or 11 left can be very useful to estimate the significance of an evaluation result. However, most of the time
evaluation data sets are limited and as shown by Figure 10 the sampling variation increases with the usage of smaller evaluation subsets. Boot-
strapping 40 is a popular resampling approach that reveals similar information but without sacrificing the accuracy of the results. Therefore, for an
evaluation data set of length N random samples with replacement (each data point can be sampled several times) of size N are drawn repeatedly
and the average scores are derived on these random samples. After repeating this k times, k different average score values are available that reflect
the sampling variation of the average score. Similarly, bootstrap averages of score differences can give a good indication of significance of these
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FIGURE 10 Sampling variation ofmean squared error for different forecastingmodels. The boxplots in the left panel show themean squared errors
of 20 different samples of length 200 and the boxplots in the right panel showmean squared errors for 10 different samples of length 400.

differences. However, it is important to note, that the bootstrapping approach assumes serial independence of forecast errors so that for possible
positive serial correlation in wind power data the bootstrapping approach can be too confident.
The right panel of Figure 11 shows themean squared error skill score variation from bootstrap sampling. Compared to the 10 subsets in the left

panel the average results are very similar but because the average skill scores are derived on larger samples their sampling distribution is much
lower. Even the difference between the quadratic and absolute loss models becomes apparent.
Additionally to the larger samples the skill scores are derived on, the differences in the variations can also partly be causedby serial correlation in

the forecast errors. Amore quantitative approach to estimate the significance of results that also takes into account these correlations is presented
in the next subsection.

4.3.3 Diebold-Mariano test
41 proposed a statistical test to test for differences in performance of two forecasts. In the following let S(ŷt, yt) be a scoring rule such as the
squared error or the absolute error and dt = S(ŷ1t , yt)− S(ŷ2t , yt) be the score difference between two different forecasts ŷ1t and ŷ2t . Furthermore,
d = 1

N

∑N
t=1 dt is the mean loss difference and γk = 1

N

∑N
t=k+1(dt − d)(dt−k − d) its autocovariance at lag k. Then the Diebold-Mariano test

statistic is
DM =

d√
γ0+2

∑h−1
k=1 γk
N

(32)
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FIGURE 11Mean squared error skill score with the quadratic loss function model as reference. The boxplots show the distribution of the average
skill scores for 10 different subsamples (left) and 250 bootstrap samples (right).

where h is the number of considered lags and should be selected large enough to notmiss any autocorrelations in the forecast errors. Under the null
hypothesis of equal performance the DieboldMariano statistic asymptotically follows a standard normal distribution

DM = N (0, 1) (33)
so that, for a two sided test, the null hypothesis can be rejected when

|DM | > zα/2 (34)
where zα/2 is the 1− α/2 quantile of the standard normal distribution to the desiredα level of the test.
Note that in the case of serial independence, the Diebold-Mariano statistic in Equation 32 becomes

DM =
d√
γ0
N

(35)

and thus the Diebold-Mariano test becomes asymptotically equivalent to a paired sample Student-t test. Care must be taken in the case of
over-lapping forecasts and it is suggested in 41 that different lead-times should be tested separately, though an appropriate modification to the
denominator of 32 is also a possibility.
Table 5 shows results for the Diebold-Mariano test for the squared errors of the absolute and quantile loss models compared to the squared

loss models from the example of section 2. These results show clearly, that the difference between the absolute and squared loss models is not
significant on this data set whereas the difference between quantile and squared loss model clearly is (i.e., p-value clearly below a typical α/2 =

0.025 confidence level).
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absolute quantile
quadratic 0.98 9.7e-09

TABLE 5 p-values from two sided Diebold-Mariano tests for equality of the squared error for the absolute and quantile loss models compared to
the quadratic loss model. See Section 2 for details on the test setup. Lower values signify more significant differences.

4.3.4 Variation in Forecast Performance
The performance of forecasting methodologies will vary according to the predictability of specific situations; however, different methodologies
may exploit the various sources of predictability to different degrees. This is particularly relevant to the set-up of underlying numerical weather
prediction models which can differ in spatial and temporal resolution, observations available for assimilation and the specific assimilation scheme,
parameterisation of physical process that cannot be resolved directly, and other factors 42. When comparing forecasts that draw on different
sources of predictability, their relative performance will also vary with the prevalence of those sources. Similarly, statistical post-processing
methods risk being biased by conditions that are abundant in training data but not explained by specific features.
Examples relevant to wind power include boundary layer mixing and low level jets. Differences in model performance during these events may

manifest in diurnal and/or seasonal variations in forecast performance. Therefore, evaluating and comparing forecast performance based on time-
of-day, time-of-year, or weather-type (if such information is available) may reveal valuable information relevant to forecast model selection, model
mixing/blending and routes to forecast improvement.

4.4 Practical Demonstration of Forecast Evaluation
In this section we outline the practical steps required to evaluate wind power forecasts. The data and code that accompany this paper 21 serve

as a practical demonstration of this procedure. This approach is aligned with the IEAWind Recommended Practice for Selecting Renewable Power
Forecasting Solutions 9, which focuses on the selection and evaluation of services from commercial forecast providers.
Consider the following practical example: a modification to an operational forecasting system has been proposed but has to be evaluated to

determine if it is an improvement or not.Wewill use the example fromSection 2.1 as the ‘Benchmark’, and compare it to a regression splinemodel 43
which incorporates wind direction. The ‘Proposed’ model is given by

yt = f1(ût) + f2(d̂t) + εt (36)
where f1(ût) is a smooth function of predictedwind speed ût estimatedby a cubic regression spline , and f2(d̂t) is a smooth function ofwinddirection
d̂t estimated by a cyclic cubic regression spline (i.e. with value and first 2 derivatives of f2(θ)matching at θ and θ + 2π for all θ).
In the following subsections, the practical steps taken to evaluate the new system and compare it’s performance are illustrated in an offline

environment using historic data, and an online environment where only ‘live’ data is available and accumulates over time.

4.4.1 Offline Evaluation Example
Offline or ex-post evaluation is the practice of evaluating the forecasts that would have been produced in the past using a given process. For

example, a forecast producermaywant to evaluate changes to their forecasting systemwithout having to build up a record of newoperational fore-
casts, or as is common in research, the sole objective may be to study forecasting methodology. In practice, ex-post evaluation may not be possible
or desirable. For instance, re-forecasts may be prohibitively expensive to produce, or if running a trial or competition it may be prudent to remove
the possibility of participants cheating by using using the historic data they are supposed to be predicting.
In our example, the forecast user has determined that absolute error best reflects the cost of forecast errors (as opposed to mean

squared/quadratic or a particular quantile), so reducing MAE is the objective. Using the GEFcom2014 data again, suppose the present time is one
year since the start of that dataset, so one year of historic data is available. The data is divided into k = 6 folds for cross-validation and the folds are
stratified tomitigate seasonal effects. Each fold comprises two distinct periods of data separated by half a year, e.g. fold one comprises January and
July, fold two comprises February and August, and so on. The exact number of folds k is somewhat arbitrary but should be large enough that k−1

k
%

of available data is sufficient for model training, and small enough that the sections of test data are not highly correlated with the surrounding data
used in training. Computational burdenmay also be a consideration. Tenmonths of training data is reasonable here for our relatively simplemodels
with only tens of parameters to estimate. And auto-correlation of the wind power time series is very low beyond one day (around 5% of test data)
so the risk of correlation impacting the results is low.
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CV Fold Benchmark Proposed
1 0.153 0.151
2 0.158 0.152
3 0.126 0.124
4 0.124 0.123
5 0.127 0.123
6 0.130 0.126
All 0.136 0.133

TABLE 6MeanAbsolute Error (as a proportion of installed capacity) for each cross-validation fold of the offline example, and for all folds combined.
The Proposedmodel has a lower score in each fold and overall, but further analysis is required to determine the significance of this difference.

The Benchmark model from Section 2.1 is implemented with the absolute loss function in order to minimise the target metric, MAE. Similarly,
the parameters of the Proposed model (36) are estimated by minimizing the absolute loss. The MAE is calculated for each fold and overall, and
the significance tests described in Section 4.3.2 are performed. The results are presented in Table 6 and Figure 12. The results indicate that the
Proposed model offers an improvement of around 2% in terms of MAE, and that this is not a result of sampling variability, shown in Figure 12. To
further support this conclusion, theDiebold-Mariano test hasbeenperformedusing theout-of-samplepredictionsproducedby the cross-validation
exercise and returned a p-value of p = 0.002, well below the standard threshold of p ≤ 0.05, allowing us to conclude that theMAE of the Proposed
method is lower than that of the Benchmark.
Based on this analysis it is reasonable to conclude that switching to the Proposedmethod will reduceMAE by around 2% in the long run. Great!

Now it becomes a business decision as to whether this improvement justifies any costs that may be associated with its implementation. In the next
section, we’ll see whether this improvement was realised once implemented.

4.4.2 Operational Evaluation Example
Operational forecasts, those produced to inform decision-making ex-ante, may be evaluated for reasons ranging from providing live feed-back to

forecast users, to complyingwith regulation or contractual agreements (e.g. where a financial reward/penalty is attached to forecast performance).
In addition, trials of forecast products are special cases of operational forecast evaluation. Operational evaluation is characterised by relatively
short evaluation periods and the possibility of interaction with decision-making processes.
To continue our example, consider the situation where forecasts are being supplied by a third party in the case of e.g., a product trial or procure-

ment exercises.We begin at the same point, one year into theGEFcom2014 dataset with forecastmodels trained on this data. Operational forecast
from both the Benchmark and Proposed methods are collected as the trial progress into the future. The end-use of the forecasts is unchanged so
we use the samemetric as in the offline example, MAE, but now can only evaluate the forecasts that have been collected since the beginning of the
trial period. After oneweek, there is only oneweek of data to analyse, and so on.
Rather than leaving the evaluation until the end of the trial at some arbitrary point in time, lets consider a periodic evaluation where each week

theMAE calculated for themost recent seven days and the aggregate of all data available to date. TheMAE for each week of the trail are tabulated
in Table 7. From this information, it is very difficult to determine whether one method is superior to the other (in terms of MAE) as both methods
have weeks when they out-perform the other, and the magnitude of the difference is variable. This uncertainty is illustrated in the left panel of
Figure 13 showing the large uncertainty introduced by sampling variation when only considering individual weeks of the trail.
The evolution of the MAE skill score throughout the trial is illustrated in the right panel of Figure 13. At each week the skill score and uncer-

tainty due to sampling variation has been calculated using all available data up to that point in the trial. This analysis suggests that the results are
inconclusive before week 10 at the very earliest, but as noted in Section 4.3.2, the bootstrap approach can be over-confident as it does not con-
sider serial correlation. It is prudent, therefore, to also consider the Diebold-Mariano test, the results of which are presented in Table 8. We see
that the difference in forecast performance is not significant at the 0.05 level (i.e. there is a greater than 5% chance that the performance of both
methods is the same) at week 10 of the trial. In general the significance of the overall result increases with the trial length, but not exclusively as the
auto-correlation of the score differential and the mean differential are also factors. There may also be seasonal variation in forecast performance
(and relative forecast performance) which we will not explore in this example. IEA Wind Recommended Practice for Selecting Renewable Power
Forecasting Solutions 9 recommends aminimum trial length of threemonths and ideally one year for these reasons.
After three to four months enough data has been collected to conclude that the Proposed method has a lower MAE than the Benchmark, and

that this reduction is of around 2%. This aligns well with our expectations from the offline study, verifying that significant performance differences
observedonhistoric data transfer intooperational experience.However, this example also serves as a reminder that an switchingmethods to reduce
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FIGURE 12Mean Absolute Error (left) andMean Absolute Error skill score (relative to Benchmark, right) for the Benchmark and Proposed models
across the combined cross-validation folds. Box plots illustrate the sampling variation estimated using the bootstrapping approach described in
Section 4.3.2with 250 bootstrap samples. The right plot indicates that themedian skill score is 0.021with an interquartile range of 0.004, therefore
uncertainty due to sampling variation is low andwe can be confident that the long-run skill score will be close to themedian.

an average score does not mean that each individual prediction will be more accurate, and that other qualities not captured by scores may be of
interest and value to some users.
5 CONCLUSION
Forecasting has become an important part of the successful integration ofwind power in energy systems andmarkets. Evaluating of these forecasts
is very important for selecting a forecast provider, quality control, or forecast model development. Most of the time, forecast errors can be related
to some kind of costs and ideally the evaluation should provide information about these expected costs. Since wind power forecast users can be
very different such aswind park operators, distribution systemoperators, transmission systemoperators, or traders, the forecasts are also used for
different applicationswithdifferent error costs. Therefore, it is important toadjust the forecast evaluation setup to the specificneedsof the forecast
user. Nevertheless, often just standard evaluation protocols are used and therefore the drawn conclusion might not always be ideal. Furthermore,
with the advent of new advanced forecast products such as probabilistic or multivariate predictions also new less intuitive evaluation techniques
have been proposed and the risk of selecting inappropriate evaluation approaches has even increased.
This paper revisited different forecast evaluation approaches with a specific focus on selecting the right methods for the specific needs of a

forecast user. In the first part of the paper a simple example case showed that the selection of the right metric is crucial to find the best forecast
system for the application these forecasts are needed. Furthermore, it is very important to use an appropriate evaluation setup (e.g., to use a large
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Week Benchmark Proposed Week Benchmark Proposed Week Benchmark Proposed
1 0.133 0.133 11 0.131 0.118 21 0.080 0.082
2 0.120 0.119 12 0.143 0.140 22 0.110 0.110
3 0.129 0.133 13 0.110 0.101 23 0.105 0.122
4 0.158 0.143 14 0.129 0.114 24 0.136 0.127
5 0.139 0.136 15 0.092 0.091 25 0.093 0.089
6 0.113 0.116 16 0.124 0.124 26 0.104 0.109
7 0.175 0.170 17 0.118 0.120 27 0.177 0.173
8 0.187 0.192 18 0.077 0.081 28 0.107 0.107
9 0.152 0.148 19 0.195 0.195 29 0.153 0.145
10 0.116 0.112 20 0.148 0.142 30 0.120 0.112

TABLE 7 Mean absolute error for each week of trial. Weekly MAE is volatile, and it is difficult to determine if one method is consistently out-
performing the other without further analysis.
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FIGURE 13 Mean absolute error skill score (Proposed relative to Benchmark) for individual weeks of online evaluation (left) and for aggregation
of available data as the trial progresses (right). Box plots illustrate the sampling variation estimated using the bootstrapping approach described
in Section 4.3.2 with 250 bootstrap samples. Results for individual weeks provide inconclusive evidence, but once data for multiple weeks is
aggregated the proposedmethod emerges as significantly more skillful.

enough data set) and know how to interpret the results. The second part then presented and discussed a number of metrics that can be useful in
wind power applications and the third part discussed the evaluation setup and interpretation of results.
To facilitate reproduction and future work, all the data and code that were used to generate the results are available for download at 21
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data as the trial progresses (right). After 10weeks the results are not significant using the standard threshold for p ≤ 0.05.
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