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Challenges in Energy-Climate Modelling B e

Climate change is driving a complete transformation of the electricity sector
« Rapid growth of renewables such as wind & solar (global investment of USS242 billion in 2020)
* Electrification of other sectors: transport & heating

Fundamentally changes exposure of energy-system to weather
* Need supply (generation) and demand (use of power) to balance quasi-instantaneously
* Imperfect foresight as both highly weather-dependent

* Key issues:
* Managing weather/climate risk in the power system today (i.e., operations)
* Designing power systems that are robust to climate uncertainty in the future (i.e., planning)

Today:
* Role of numerical modelling but combining with statistical methods
* Illustrate with ”S2S5” subseasonal forecasts for energy applications

* Focus on “operational” weather/climate risk management
* Very happy to discuss planning (e.g., capacity expansion under climate uncertainty offline!).

Image: pxhere.com/en/photo/1408472



Why physical/numerical models? B !

* Drivers: differential insolation and rotation
 Gross large-scale time-average structure of atmospheric/ocean circulation well understood...
.. but great complexity for understanding, simulating and predicting variations

 Physically-based numerical GFD models encode representation of ‘real’ atmospheric structure and behaviour
.. correlations, co-dependencies, co-evolution etc
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What is a physical NWP model?

Initial state analysis

3-0 Grid box
(€O, dust, H,0,)

Dynamical “core” ~ based on Navier-Stokes eqns
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Physical “parameterisation” schemes

. Cloud/moisture processes

. Surface energy and momentum exchange
. Radiation...
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Initial condition ensembles Reading

* |nitial condition error grows rapidly (¥days in the lower atmosphere)

* |[lustration: Lorenz-63 model
* Analogies to NWP

* Skill in longer-range forecasts (> weeks) involves initialization and/or modelling of “slower evolving” climate-
system components (sea-ice, upper atmosphere, near-surface ocean, etc)
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Subseasonal forecasting Reading

Subseasonal (or “extended-range”) forecasts: approximately 1-4 weeks ahead

Bridge “gap” between long-range outlooks and short-range weather forecasts

Applications in planning, trading / financial risk management, scheduling (e.g., maintenance, hydropower), ...

* Previous studies suggest modest but positive forecast skill for wind over Europe (Lynch et al 2014) but...
* Inherently probabilistic

(a) WEATHER FORECASTS
* Require large ensembles Cimospherig condtons
. . S2S PREDICTIONS
® SpatIO-tempOFa| laggregatlon' predictability comes from initial

atmospheric conditions, monitoring the

* Time-varying: ‘'windows of opportunity’ excellent e citer sonmme T 0 smiosphere
SEASONAL OUTLOOKS

- predictability comes primarily from
* Here - statistical/NWP hybrids for energy forecasting: % go0¢ e
* Introducing the models, data and preliminary skill assessment D ar
<
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 Part 1 - Pattern forecasting / conditioning 0 '\*
. . . O poor
* Part 2 - Sequential learning algorithms -
Zero
H2020 S2S4E project — particular thanks to UREAD team: s
Paula Gonzalez, Hannah Bloomfield, David Livings, FORECAST RANGE
Emma Suckling, James Fallon & Andrew Charlton-Perez

Figure: White et al (2017) 6



Background: models & data

e S2SA4E project: Prototype “climate service for energy”
e ~3 year research programme over 5 EU institutes

* Open Access research dataset (publication: Bloomfield et al, 2021) includes:
* Nationally-aggregated hourly wind, solar, demand 1950-2020 (from ERA-5 and MERRA?2)
* Two extended-range reforecast datasets for energy (versions current ~2016)
« ECMWEF-ER = 11 member hindcast 1995-2015
* NCEP-GFS - lagged 12-member hindcast 1999-2010
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Baseline gridpoint forecast B o

Daily gridded Weekly-mean
| weather variables grid point forecast
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Figs: Bloomfield et al (2021)




Gridpoint forecast skill

* Evidence for skill (to at least week 2)
* Skill depends on metric chosen
* Typically less skill in more complex metrics

* Question: can skill be improved?

* Pattern-based methods
* Sequential learning algorithms

Week# Day#

1 5-11

2 12-18

3 19-25
Figure: Bloomfield et al, 2021, ESSD 4 26-32

@ Unlver5|ty of
Reading

Winter (DJF) Demand-Net-Wind, weekly-mean
ECMWEF forecast, skill w.r.t. climatological forecast
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Part 1 — Pattern-based techniques B3 Reading
NAO-

This section:
* Bloomfield et al (2020 & 2021, Met Applications)

2mT

European surface climate/energy strongly influenced by large-

scale circulation, e.g.:

* Brayshaw et al 2011; Santos-Alamillos et al 2012; Ely et al
2013; Grams et al 2017; van der Weil et al 2019; Bloomfield et
al 2020

10 m wind

“Weather-regimes” (e.g., Cassou 2008)

-2

Large-scale circulation potentially offers predictability: Sweden o “T Germany
* Error growth from initial condition (type-I) uncertainty ~ o NAO+
= 041 JR— 0.4
saturates at longer leads Z — ﬁ,tl'r;
* Spatio-temporal averaging enhances signal-to-noise = 03 03
* Physical “drivers” typically large-scale :3‘ 2
Q o2 (= 1P
(o}
Q
Two approaches: QE_ 01 01
* Pattern-forecasting
« Conditional-prediction S T ; S i 10

Figs: Bloomfield et al (2020) Demand-net-wind (norma//zed anoma/y)



Approach 1 — Pattern forecasting B

Daily gridded Weekly-mean
| 0 weather variables grid point forecast
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Pattern-forecast skill B o

* Week 1: Winter (DJF) Demand-Net-Wind, weekly-mean EnsCorr
Skill w.r.t. climatological forecast

» Pattern forecast outperformed by gridpoint

WR-GP
* ECMWF week 3:
* Significant skill improvement in EnsCorr n
* No change in RPSS/CRPSS =
=
O
* NCEP week 3: LI
* Significant skill improvement in EnsCorr,
* Also improvement in RPSS & CRPSS
1 5-11 &
O
2 12-18 =
3 19-25
4 26-32 0.2 0.4 0.6 0.8 02 -0.1 0.0 0.1 02

Difference in skill score

Figs: Bloomfield et al (2021) EnsCorr



Pattern-forecast discussion University of

Reading

* Interpretation:

* Forecast = (NWP-derived prediction of large-scale pattern) x (reanalysis-derived impact model)

* NCEP more biased (w.r.t. ERA5 truth) than ECMWF so benefits more from 2-step process
* However:

* Predictive skill for weekly-weather patterns at leads of 15-20 days

* Weather-patterns with stronger link to energy-system impacts (e.g., TCTs; Bloomfield et al 2019) but with some loss
of predictive skill (here led to overall weaker performance than standard weather-patterns)

* Challenge: seeking optimal patterns to maximize pattern predictability and energy-system impact

Weather regime forecast assignment
o Standard Weather Regimes Targeted Circulation Types

801 ECMWE

60 -
40 {NCEP

20

Correct assighments (%)

0

0 5 10 15 20 25 30 35

; . . 13
Figs: Bloomfield et al (2021) Lead time DJF DNW CRPSS skill assuming perfect pattern forecast



Approach 2 - Conditional forecasting B o

Figs:
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Conditional gridpoint forecast skill

* Significant improvement in skill
e ~0.2 RPSSS week 1
* Up to ~0.5in week 2

* Modest number of forecasts discarded
* 8% week 1
* 28% week 2

* Methodological decisions could be optimized, e.g.:

Week# Day#

* Thresholding for discard/accept

1 5-11

2 12-18
3 19-25
4 26-32

Figs: Bloomfield et al (2021)
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Conditional gridpoint forecast skill

* Significant improvement in skill

e ~0.2 RPSSS week 1
* Up to ~0.5in week 2

* Modest number of forecasts discarded

% week 1

University of

Reading

Winter (DJF) Demand-Net-Wind, weekly-mean RPSS terciles

NCEP forecast skill w.r.t. climatological forecast
GP

Cond WR Cond WR - GP
(d) X

LT

Week 0

* Met

i Part 1 — Summary for pattern-based methods
« Significant possibilities for enhancing “modest skill” NWP at extended range
+  Weekly-mean weather regimes predictability at leads of ~10-15 days

» Pattern-forecast “2-step approach” compensates for deficiencies in NWP surface

representation

« Conditional forecasting enables intelligent use of grid-point forecasts

Figs: Bloomfield et al (2021)
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Part 2 — Sequential Learning Algorithms

* This section follows Gonzalez et al 2021 (QJ Royal Met Soc)

* Multiple NWP systems (here NCEP-GFS/ECMWF-ER but also UKMO, DWD, MeteoFrance etc)
* All have deficiencies, all have limited ensemble size
* Wish to ‘combine’ to produce a single ‘best’ forecast
* Possible also other expert datastreams (e.g., statistical forecasts) with predictive power

* Most approaches applied to NWP presently tend to:
* Apply 'fixed weighting’ schemes to component forecasts (based on a prior skill assessment)
* Produce deterministic ‘point forecast’ output
¢ Combine NWP forecasts but not other expert datastreams

» Sequential learning algorithms (SLAs) may offer many benefits:
* Weighting evolves dynamically (adapts to skill changes, no need for offline retraining)
* Probabilistic forecast output
* Combine multiple types of forecast expert (not limited to NWP)

University of

Reading
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SLA - Methods

* Language & terminology (for those more familiar with NWP!):
* NWP ensemble properties (e.g., quantiles) = ‘experts’
 Also reanalysis, statistical predictors etc = ‘experts’

* Thanks INI “Maths of Energy Systems” programme (2019).

* Here, using the converted-to-energy datasets discussed
previously over a common period (1999-2010):

« ECMWEF ER 11-member hindcast

« =>» Experts: MIN, Q10, Q35, Q50, Q65, Q90, MAX
* NCEP GFS lagged 12-member hindcast

« =>» Experts: MIN, Q10, Q35, Q50, Q65, Q90, MAX
* ERAS5 ’‘observations’

« =>» Experts: Climatology Q10, Q35, Q50, Q65, Q90

» =>» Experts: Seasonal climatology MAX MIN

« =>» Expert: Last week’s weather PERS

e =» Expert: Last year’s weather PERS_1YR

* 4 different SLAs (of 2 basic types) — open source packages
* In all cases, a ‘genuine’ forecast is being made

@ Unlver5|ty of
Reading

Name Description

BOA Bernstein Online Aggregation
EGA Exponentiate Gradient Algorithm
BOA_NWP BOA restricted to NWP experts
EGA _NWP EGA restricted to NWP experts

NWP MULTI-MODEL
0. 22 oL IS SLA COMBINATION FORECAST

SET FOR QUANTILE gi

REANALYSIS

ITERATE THROUGH QUANTILES (qi=0.05,0.1,...,0.95)

'if

MULTI-MODEL
FORECAST
PDF

]

Fig: Gonzalez et al 2021
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SLA methods — example weight evolution BB vy

c) UK demand week3 fcst — EGA weights evolution — Q50
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Fig: Gonzalez et al 2021
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SLA methods — example weight evolution BB vy

Weight

04

b) UK demand weeks fest - BOA weights evolution — Q50 c) UK demand week3 fcst — EGA weights evolution — Q50
R e
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Fig: Gonzalez et al 2021



SLA forecast skill B e

* Pinball loss (~CRPSS) referenced to “Equal Weights NWP” (b) @-mean improvement relative to EW_NWP
UK Demand forecast UK Demand - years 4-12 (2002-2010)

* Schemes ordered L->R on week 3 .
1.5 Leadtime

« week 1: days 1-7; o wki
. . ~14- 4 wk2
week 2: days 8-14, N = wka e A
« week 3: days 15-21; 2,35 wtg
| B W
« week 4: days 22-28; %
. o
« week 5: days 29-35. = 1 ;
® 1.1
2 B
— o
= e —_—— - - —— -
g w = A A -
Z| £00 ° #
8 o ! I » .
5 L
=
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¢ £ O 2 3 z uw 3
w z m z z = € 0O
< g = 0
0 a -

Fig: Gonzalez et al 2021 Forecast schemes



SLA forecast skill — week 1 Reading

* Pinball loss (~CRPSS) referenced to “Equal Weights NWP” (b) @-mean improvement relative to EW_NWP

UK Demand forecast UK Demand - years 4-12 (2002-2010)

* Schemes ordered L->R on week 3 .
1.5 Leadtime
« week 1: days 1-7;

e wki
. week 2: days 8-14; N : mgg . A

« week 3: days 15-21; S,5 T wkd

« week 4: days 22-28; El | Wb
« week 5: days 29-35. -g
* Week 1 (blue dots): E
* ECMWEF best forecast (beats any combinations) 3
* CLIM worst forecast (and NCEP poor**) E
- SLAs (BOA, EGA, BOA_NWP, EGA_NWP): a

e Outperform “Equal Weights”
* Are outperformed by ECMWF

More skillful

BOA

<L
o
w

CLIM

** Note: NCEP’s relatively poor performance compared to ECMWEF can be
partly attributed to the use of ERA-5 (based on the ECMWF model) as the
reference ‘truth’

ECMWF
NCEP

EGA_NWP
BOA_NWP
EW_NWP

Fig: Gonzalez et al 2021 Forecast schemes



SLA forecast skill — week 3 Reading

- Week 3 (days 15-21) - (b) @-mean improvement relative to EW_NWP
UK Demand - years 4-12 (2002-2010)

* Outperform any single forecast : WE
W
* Outperform Equal Weights (~10%) % = wk3 s 4
+ wk4
%1% & wks
e Adding “reanalysis experts” advantageous (few %) E
- EGA > EGA_NWP = , =
= B
« BOA > BOA_NWP 2 1.1
7 B
2 1 e @
* ECMWEF best single forecast but outperformed by all combination T | £ ° —~ 3
schemes (EGA, BOA and, marginally, Equal-weights) g a 0.9 5 3 I
o
=
* Note: qualitative behaviour is robust across case studies
. “ ” : : : H <L o al al LL
examined but “best” SLA (and quantitative improvement) varies = % 5 £ & % & %
" zI “ zI zI (E_) {i: ©
T
g §& "

Fig: Gonzalez et al 2021 Forecast schemes



ECMWF > NCEP

Week 1 — Q50
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SLA forecast skill — week 3 Reading

- Week 3 (days 15-21) - (b) @-mean improvement relative to EW_NWP
UK Demand - years 4-12 (2002-2010)

e Outperform any single forecast e wki
A wkg

a MNubrinavfnvin Canvial \AlAi~lhd~ [~vA1NQ/)

Part 2 — Summary for Sequential Learning Algorithms
» Significant possibilities for enhancing “modest skill” NWP (here, at extended range)

* By construction well-suited to operations, no need for offline training / refitting

[
rMm

« Able to combine multiple datastreams and adapt to change in skKill

* Need for further understanding of the role played by the weights:

m

» Residual bias adjustment, responding to “slow” evolution or learning “new” predictability?

o = |
L m

Fig: Gonzalez et al 2021 Forecast schemes



Summary

* Numerical Weather Prediction (NWP) models are a powerful tool
* High-quality probabilistic (ensemble) forecasts, embedding physical behaviours and structures

* Nevertheless, in many cases NWP can be enhanced by statistical methods, e.g.:
* Pattern-based and conditional forecasts
* Sequential Learning Algorithms

* Sequential learning algorithms highly flexible
* Significant improvements in skill
* Open source code/packages

Well-suited to operations (no need for offline training, adapts when models/skill changes)

Combine multiple "expert” prediction streams

... but somewhat “black box” regards weight evolution — need for more understanding

* Not discussed the decision-process
* Forecast skill into forecast value (decision outcomes) — often related to optimization
* See Brayshaw et al (2020, Met. Applications) for discussion (operations and planning)

University of

Reading
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Closing remarks

* Next Generation Challenges in Energy-Climate Modelling workshop
14t — 16t September 2022
 Free to attend, highly interactive and opportunity to present research

 See also Bloomfield et al (2021, Bull. Am. Met. Soc.) for overview of past events

 Climate Services and Climate Impact Modelling course
e Starts January 2023
e https://www.reading.ac.uk/meteorology/online-courses/classes

University of

Reading
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https://research.reading.ac.uk/met-energy/next-generation-challenges-workshop/next-generation-energy-climate-modelling-2022/
https://www.reading.ac.uk/meteorology/online-courses/classes
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