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Challenges in Energy-Climate Modelling
• Climate change is driving a complete transformation of the electricity sector

• Rapid growth of renewables such as wind & solar (global investment of US$242 billion in 2020)

• Electrification of other sectors: transport & heating

• Fundamentally changes exposure of energy-system to weather

• Need supply (generation) and demand (use of power) to balance quasi-instantaneously

• Imperfect foresight as both highly weather-dependent

• Key issues:

• Managing weather/climate risk in the power system today (i.e., operations)

• Designing power systems that are robust to climate uncertainty in the future (i.e., planning)

• Today:

• Role of numerical modelling but combining with statistical methods

• Illustrate with ”S2S” subseasonal forecasts for energy applications

• Focus on “operational” weather/climate risk management

• Very happy to discuss planning (e.g., capacity expansion under climate uncertainty offline!).

2
Image: pxhere.com/en/photo/1408472



Why physical/numerical models?
• Drivers: differential insolation and rotation

• Gross large-scale time-average structure of atmospheric/ocean circulation well understood…

• … but great complexity for understanding, simulating and predicting variations

• Physically-based numerical GFD models encode representation of ‘real’ atmospheric structure and behaviour

• … correlations, co-dependencies, co-evolution etc

3Encyclopedia Brittanica



What is a physical NWP model?
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Initial condition ensembles
• Initial condition error grows rapidly (~days in the lower atmosphere)

• Illustration: Lorenz-63 model

• Analogies to NWP

• Skill in longer-range forecasts (> weeks) involves initialization and/or modelling of “slower evolving” climate-
system components (sea-ice, upper atmosphere, near-surface ocean, etc)
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Subseasonal forecasting
• Subseasonal (or “extended-range”) forecasts: approximately 1-4 weeks ahead

• Bridge “gap” between long-range outlooks and short-range weather forecasts

• Applications in planning, trading / financial risk management, scheduling (e.g., maintenance, hydropower), …

• Previous studies suggest modest but positive forecast skill for wind over Europe (Lynch et al 2014) but…

• Inherently probabilistic

• Require large ensembles

• Spatio-temporal ‘aggregation’

• Time-varying: ’windows of opportunity’

• Here - statistical/NWP hybrids for energy forecasting:

• Introducing the models, data and preliminary skill assessment

• Part 1 - Pattern forecasting / conditioning

• Part 2 - Sequential learning algorithms

6Figure: White et al (2017)
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Background: models & data
• S2S4E project: Prototype “climate service for energy”

• ~3 year research programme over 5 EU institutes

• Open Access research dataset (publication: Bloomfield et al, 2021) includes:

• Nationally-aggregated hourly wind, solar, demand 1950-2020 (from ERA-5 and MERRA2)

• Two extended-range reforecast datasets for energy (versions current ~2016)

• ECMWF-ER → 11 member hindcast 1995-2015

• NCEP-GFS → lagged 12-member hindcast 1999-2010
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Baseline gridpoint forecast
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Gridpoint forecast skill
• Evidence for skill (to at least week 2)

• Skill depends on metric chosen

• Typically less skill in more complex metrics

• Question: can skill be improved?

• Pattern-based methods

• Sequential learning algorithms

9Figure: Bloomfield et al, 2021, ESSD
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Part 1 – Pattern-based techniques
This section: 

• Bloomfield et al (2020 & 2021, Met Applications)

European surface climate/energy strongly influenced by large-
scale circulation, e.g.:

• Brayshaw et al 2011; Santos-Alamillos et al 2012; Ely et al 
2013; Grams et al 2017; van der Weil et al 2019; Bloomfield et 
al 2020

“Weather-regimes” (e.g., Cassou 2008)

Large-scale circulation potentially offers predictability:

• Error growth from initial condition (type-I) uncertainty 
saturates at longer leads 

• Spatio-temporal averaging enhances signal-to-noise 

• Physical “drivers” typically large-scale

Two approaches:

• Pattern-forecasting

• Conditional-prediction 10
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Approach 1 – Pattern forecasting
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Pattern-forecast skill
• Week 1:

• Pattern forecast outperformed by gridpoint

• ECMWF week 3:

• Significant skill improvement in EnsCorr

• No change in RPSS/CRPSS

• NCEP week 3:

• Significant skill improvement in EnsCorr, 

• Also improvement in RPSS & CRPSS
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Pattern-forecast discussion
• Interpretation:

• Forecast = (NWP-derived prediction of large-scale pattern) x (reanalysis-derived impact model)

• NCEP more biased (w.r.t. ERA5 truth) than ECMWF so benefits more from 2-step process

• However: 

• Predictive skill for weekly-weather patterns at leads of 15-20 days

• Weather-patterns with stronger link to energy-system impacts (e.g., TCTs; Bloomfield et al 2019) but with some loss 
of predictive skill (here led to overall weaker performance than standard weather-patterns)

• Challenge: seeking optimal patterns to maximize pattern predictability and energy-system impact
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Approach 2 - Conditional forecasting
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Conditional gridpoint forecast skill
• Significant improvement in skill

• ~0.2 RPSSS week 1

• Up to ~0.5 in week 2

• Modest number of forecasts discarded

• 8% week 1

• 28% week 2

• Methodological decisions could be optimized, e.g.:

• Thresholding for discard/accept
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Conditional gridpoint forecast skill
• Significant improvement in skill

• ~0.2 RPSSS week 1

• Up to ~0.5 in week 2

• Modest number of forecasts discarded

• 8% week 1

• 28% week 2

• Methodological decisions could be optimized, e.g.:

• Thresholding for discard/accept
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Part 1 – Summary for pattern-based methods

• Significant possibilities for enhancing “modest skill” NWP at extended range

• Weekly-mean weather regimes predictability at leads of ~10-15 days

• Pattern-forecast “2-step approach” compensates for deficiencies in NWP surface 

representation

• Conditional forecasting enables intelligent use of grid-point forecasts

Figs: Bloomfield et al (2021)



Part 2 – Sequential Learning Algorithms
• This section follows Gonzalez et al 2021 (QJ Royal Met Soc)

• Multiple NWP systems (here NCEP-GFS/ECMWF-ER but also UKMO, DWD, MeteoFrance etc)

• All have deficiencies, all have limited ensemble size

• Wish to ‘combine’ to produce a single ‘best’ forecast

• Possible also other expert datastreams (e.g., statistical forecasts) with predictive power

• Most approaches applied to NWP presently tend to:

• Apply ’fixed weighting’ schemes to component forecasts (based on a prior skill assessment)

• Produce deterministic ‘point forecast’ output

• Combine NWP forecasts but not other expert datastreams

• Sequential learning algorithms (SLAs) may offer many benefits:

• Weighting evolves dynamically (adapts to skill changes, no need for offline retraining)

• Probabilistic forecast output

• Combine multiple types of forecast expert (not limited to NWP)
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SLA - Methods
• Language & terminology (for those more familiar with NWP!):

• NWP ensemble properties (e.g., quantiles) ➔ ‘experts’

• Also reanalysis, statistical predictors etc➔ ‘experts’

• Thanks INI “Maths of Energy Systems” programme (2019).

• Here, using the converted-to-energy datasets discussed 
previously over a common period (1999-2010):

• ECMWF ER 11-member hindcast

• ➔ Experts: MIN, Q10, Q35, Q50, Q65, Q90, MAX

• NCEP GFS lagged 12-member hindcast

• ➔ Experts: MIN, Q10, Q35, Q50, Q65, Q90, MAX

• ERA5 ’observations’

• ➔ Experts: Climatology Q10, Q35, Q50, Q65, Q90

• ➔ Experts: Seasonal climatology MAX MIN

• ➔ Expert: Last week’s weather PERS

• ➔ Expert: Last year’s weather PERS_1YR

• 4 different SLAs (of 2 basic types) – open source packages

• In all cases, a ‘genuine’ forecast is being made
18

Name Description

BOA Bernstein Online Aggregation 

EGA Exponentiate Gradient Algorithm

BOA_NWP BOA restricted to NWP experts

EGA_NWP EGA restricted to NWP experts

Fig: Gonzalez et al 2021



SLA methods – example weight evolution
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SLA methods – example weight evolution
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SLA forecast skill
• Pinball loss (~CRPSS) referenced to “Equal Weights NWP”

• UK Demand forecast

• Schemes ordered L→R on week 3

21

M
o

re
 s

ki
llf

u
l

Forecast schemes

Leadtime

Fig: Gonzalez et al 2021



SLA forecast skill – week 1
• Pinball loss (~CRPSS) referenced to “Equal Weights NWP”

• UK Demand forecast

• Schemes ordered L→R on week 3

• Week 1 (blue dots): 

• ECMWF best forecast (beats any combinations)

• CLIM worst forecast (and NCEP poor**)

• SLAs (BOA, EGA, BOA_NWP, EGA_NWP):

• Outperform “Equal Weights”

• Are outperformed by ECMWF

** Note: NCEP’s relatively poor performance compared to ECMWF can be 
partly attributed to the use of ERA-5 (based on the ECMWF model) as the 
reference ‘truth’
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SLA forecast skill – week 3
• Week 3 (days 15-21) – orange squares

• SLAs (EGA and BOA):

• Outperform any single forecast

• Outperform Equal Weights (~10%)

• Adding ”reanalysis experts” advantageous (few %)

• EGA > EGA_NWP

• BOA > BOA_NWP 

• ECMWF best single forecast but outperformed by all combination 
schemes (EGA, BOA and, marginally, Equal-weights)

• Note: qualitative behaviour is robust across case studies 
examined but “best” SLA (and quantitative improvement) varies
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The role of weights
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Week 1 – Q50

Week 3 – Q50

ECMWF > NCEP
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Skew in forecast quantiles



The role of weights
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SLA forecast skill – week 3
• Week 3 (days 15-21) – orange squares

• EGA and BOA:

• Outperform any single forecast

• Outperform Equal Weights (~10%)

• Adding ”reanalysis experts” advantageous (few %)

• EGA > EGA_NWP

• BOA > BOA_NWP 

• ECMWF best single forecast but outperformed by all combination 
schemes (EGA, BOA and, marginally, Equal-weights)

• Note: qualitative behaviour is robust across case studies 
examined but “best” SLA (and quantitative improvement) varies
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Part 2 – Summary for Sequential Learning Algorithms

• Significant possibilities for enhancing “modest skill” NWP (here, at extended range)

• By construction well-suited to operations, no need for offline training / refitting

• Able to combine multiple datastreams and adapt to change in skill

• Need for further understanding of the role played by the weights:

• Residual bias adjustment, responding to “slow” evolution or learning “new” predictability?



Summary
• Numerical Weather Prediction (NWP) models are a powerful tool

• High-quality probabilistic (ensemble) forecasts, embedding physical behaviours and structures

• Nevertheless, in many cases NWP can be enhanced by statistical methods, e.g.:

• Pattern-based and conditional forecasts

• Sequential Learning Algorithms

• Sequential learning algorithms highly flexible

• Significant improvements in skill

• Open source code/packages

• Well-suited to operations (no need for offline training, adapts when models/skill changes)

• Combine multiple ”expert” prediction streams

• … but somewhat “black box” regards weight evolution – need for more understanding

• Not discussed the decision-process

• Forecast skill into forecast value (decision outcomes) – often related to optimization

• See Brayshaw et al (2020, Met. Applications) for discussion (operations and planning) 27



Closing remarks

• Next Generation Challenges in Energy-Climate Modelling workshop

• 14th – 16th September 2022

• Free to attend, highly interactive and opportunity to present research

• See also Bloomfield et al (2021, Bull. Am. Met. Soc.) for overview of past events

• Climate Services and Climate Impact Modelling course

• Starts January 2023

• https://www.reading.ac.uk/meteorology/online-courses/classes
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