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Power Distribution in Transition AM | DI N E

Analytn:al Middleware for Informed Distribution Networks

« Last mile of power systems is the Distribution
network:

— Low Voltage (LV), originally intended to deliver power to
end users. Nothing else.

— Simple. No monitoring required.

e But now:

— Low Carbon heat and transport result in higher loads on
un-monitored networks

— PV on LV networks not reported but can cause voltage
issues — again, no monitoring to quantify impact

— Transmission awareness of distribution behaviour
lacking

« Do we need monitoring everywhere before we
go any further with this?
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Ways to Understand...
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« Monitoring « Simulation
— Costs money — Are assumptions right/realistic?
— Where/when/how often? — Time resolution?
— Better with simulation? — Better with monitoring?

* Do both...? e Do both. . .?
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Certainty and Uncertainty AM | []I N E

Analytmal Middleware for Informed Distribution Networks

« Know how the network fits together

« Well understood power systems models
Indicate how it will behave

« Key unknown is what the loads are and
what they will do
— LV distribution features little (no) monitoring

— Not much forecasting done at LV — no need
until now
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AMIDINe
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« 2 Year EPSRC funded programme of research

— Development of tools for managing demand uncertainties faced by Distribution System
Operators

— Bringing together Machine Learning with Power Systems modelling

« Partners: Strathclyde (Lead), Oxford, Drax (Opus Energy), SSEN (GB DNO
and TNO), Bellrock Technology, The Countinglab, PNDC + support from
SERL

« Started 15t October 2019 — now extended to September 30t 2022
— Additional industry funded projects pulling outputs through to higher TRL in parallel
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CONSEQUENCE OF LV BEHAVIOUR
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Modelling at LV
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e LV feeders number in the 10s of 1000s in most DNO
license areas

 Although fairly simple (cables, CBs, transformers + some
automation) can be variabllity in topology, spec and
therefore behaviour

« Stringy rural feeder not like dense urban one

* Voltage and thermal constraint violations possible under
some circumstances
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LV Feeders below
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AMIDINe Solution
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« Develop software that automatically converts raw GIS data into Power
Systems (PS) Models, which are one-line representations of a particular
network.

« Eliminate the need to manually translate from GIS data (very time
consuming/impractical).

« Use open source software — no need for expensive licences for proprietary
software e.g. ArcGlIS.

* Population of PS models with metered substation (or smart meter?) load
data.
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Development Methodolgy AM | []I NE

Analytu:al Middleware for Informed Distribution Networks

Voltage, phase angles, losses and P&Q for
every bus

Phase voltage along LV feeders

Buses+lines

Basis for testing
phase balancing,

JPETT LY INN S state estimation,
R e e hierarchical
- * .
& sars Phase voltage along LV feeders fo recast| n
D Choose R o o &
b network . voltage control,
. y fee:c:ler & storage
- identifier or g e
L ] 475
% area postcode : placement...
’ )
’0. =
*a Sgagnt® * 2 ;

W0 150 200
Feeder Length [m]
0 10 20 30 40

Shapefiles -

PV

Tz e ks
b AR W
&U"Um T

Time [days)

4 2 0 2

I
—
S
H
i

Narmatised Dally Enargy e

Load profile data
or simulation

ELECTRONIC & ELECTRICAL ENGINEERING



EXAMPLES s O

Strathclyde

* Two application examples outlined here:

1. Primary Substation model, MV only — Load at MV/LV
secondary substations modelled as “Lump” Loads

2. Primary Substation model, MV and LV — Detalled LV network
modelling (hierarchy down to the premises) at select MV/LV
secondary substations.
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PRIMARY SUBSTATION MODEL
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PRIMARY SUBSTATION MODEL =

LUMPED LOADS AT SECONDARIES/PMs - SIMULATION Strathclyde

Power Flows at H Vpgidf of Primary

Example of power flows at 38 Secondaries and 53 Pole Mounted
Transformers
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Detailed LV Modelling at selected =
secondary/pole-mounted transformers ALEuL

Simulation Example

* Population of load data
at 52 individual LV loads.

* Existing smart meter
data used to model

loads .
K -~ Individual | * Power flow simulated
v .- Loads across 7 day period —
Feedg_rf____ results extracted and
------ analyzed.
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Detailed LV Modelling at selected

Strathclyde

secondary/pole-mounted transformers

Analyze LV phase voltages
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Detailed LV Modelling at selected oy O
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secondary/pole-mounted transformers

Assess impact of embedded generation

Phase voltage along LV feeders

Phase voltage along LV feeders
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FORECASTS FOR LV LOAD BEHAVIOUR
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LV Forecast Objectives
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 In residential load forecasting the low signal to noise ratio
makes skilful forecasting challenging, when compared to models
for higher voltage levels

» Typical average error metrics, e.g. MAE/RMSE, In practice reward
smooth forecasts --> heavy penalisation of phase errors

 However, often peak demand at individual level is important for
dynamic pricing, battery scheduling, EV charging, etc.

— Can we shift focus of the forecasting model to ‘cardinal point’ type models
— For now let’s generate probabilistic forecast of daily peak demand intensity and timing
— Can we do this hierarchically to the primary substation level?

ELECTRONIC & ELECTRICAL ENGINEERING



Dally Load Profiles % Forecast Error for
Persistence
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Disaggregate demand L &
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Hypothetical Hierarchies
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Hypothetical Hierarchies
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Daily Peak Demand
Lag-dependency
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Daily peak demand 2
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Measurement of Forecast Utility...
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Forecasting for Distribution at LV . <
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 Need general-purpose forecasts that capture o F
peaks = Feeder
« Fusion of conventional and a bespoke “peak” =
forecast :
 Peak forecast: bivariate prediction of size -
and tllmlng of peak | —
— “Time of peak” as hazard function Time of day [h]
* Generalised Additive Models for Location — | Household
Scale and Shape used extensively Zar
— Additive models for each distribution parameter £ [
— Generalised Beta Prime - M
N _(l) ; 1IO 1I5 2|O

Time of day [h]
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Pull through to higher TRL/operational deployment

TRANSLATION
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Translation Activities/Projects
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Control Room Future
— Ofgem Network Innovation Allowance (NIA) with UKPN and SSEN

— Requirements gathering for DSO control room with greater degrees of
automation

Future Control Room Analytics

— PNDC core research with SSEN, SPEN and UKPN

— Bellrock Lumen deployment of forecasting and power system modelling tools
Development of a State-of-the-Art Digital Twin for Enhancing Distribution
Network Visibility and Unlocking Distributed Energy Resource Potential
— Strategic Innovation Fund (SIF) with ScottishPower

WPD Presumed Open Data (POD) Challenge

— PSS demand and PV generation forecasting
— ‘AMIDiINe North’ came in 12th

ELECTRONIC & ELECTRICAL ENGINEERING



Future Control Room Analytics: Objective and Motives \&
ytics: Ob] T3 PNDC

UNIVERSITY of STRATHCLYDE

* DSO control room needs additional functionality from current implementation
* Distribution network actor behaviours are different from larger system players
* Required analytics either bespoke or just not available off the shelf —how to
build capability in preparation for changes in practice/new practices?:
* |dentify analytics integral to DSO function
 |Implement these using the Bellrock Lumen platform as the data pipeline
and use publicly available data to illustrate
* Deploy on a platform which could allow all potential end users to evaluate
it

 (Can’t second guess end users — need direct feedback




3 DSO Analytics A'; P N D C
N/

UNIVERSITY of STRATHCLYDE

* 3 chosen by kick-off workshop participants were:

1. Flexibility service provision tracker (how much flexibility, when)

2. Hierarchical load forecast (where is flexibility) — Using a set of LV metering
points from 415V up to primary, forecast load both at the aggregated and
disaggregated levels. Hierarchical load forecast learns a coherence matrix
which identifies the expected way forecasts fit together and corrects base
forecasts before they are aggregated to a higher point in the network. Key
learning: identifying where and when do base forecasts change behaviour.

3. LV feeder digital twin (operational consequence)

1 & 3 written in Python with a Django web based user interface; 2 written in R

— key challenge here is integration with existing or heterogeneous workflows




Analytic #1: Quantifying Flexibility P NDC

UNIVERSITY of STRATHCLYDE
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Analytic #2: Hierarchical Load Forecasting
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Analytic #3: LV Digital Twin S PNDC

UNIVERSITY of STRATHCLYDE

Features Network circuit of

* Network model automatically generated from interest — pull
GIS shapefile data from GIS

*  MPANs populated with either Smart Meter data
or simulated domestic loads

* EPRI OpenDSS solver used (in Lumen, on Cloud)

* 30 minute snapshots of full network
observation

* Django based Ul runs in web browser
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In research terms

NEXT?
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Main Findings
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* Won't be able to get fully observed models of power networks
at LV

 Can get the networks though — even more viable with
digitalisation

« Can hypothesise how these networks will behave under
particular loading scenarios

— Mainly the edge cases

* Unobserved guantities can be recovered through power flow
model which ML models (PV estimation, loss estimates, state
estimators, hierarchical forecast models, reactive power
forecasts etc) can be trained

ELECTRONIC & ELECTRICAL ENGINEERING



Threads left hanging?

Informed? Then what?

— Planning

— Control

Even less than very little data?
— Transfer learning

— One shot learning

— Superesolution

Model said what?

— Explainability

Data said what?

— Provenance and uncertainty

ELECTRONIC & ELECTRICAL ENGINEERING
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Analytical Middleware for Informed Distribution Networks
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