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Limits of extrapolation associated with Bayesian extreme value models.

Aim: Understand the risks of hazardous meteorological events.

Inondations : le Lot-et-Garonne touché par la "crue
la plus importante depuis quarante ans”
(Source: lemonde.fr, Février 2021)
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lemonde.fr

MCMC

Bayesian inference on § ~ 1 = computation of E.[f(0)] = [ (6)m(8)do.

MCMC (Markov Chain Monte Carlo):

Monte Carlo Markov Chain
E[f(0)] = £ > 7, £(67) Oiy1 | 0i ~ P(0;,-)

3/20



MCMC

Bayesian inference on § ~ 1 = computation of E.[f(0)] = [ (6)m(8)do.

MCMC (Markov Chain Monte Carlo):

Monte Carlo Markov Chain
E[f(0)] = £ > 7, £(67) Oiy1 | 0i ~ P(0;,-)

® Algorithms: Metropolis—Hastings, Gibbs sampling, Hamiltonian Monte Carlo (HMC)
(Neal, 2011), No U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014), etc.

e Librairies: JAGS (Plummer et al., 2003), Stan (Carpenter et al., 2017), PyMC3
(Salvatier et al., 2016)...
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Has the chain(s) converged? Need for multiple chains
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R (aka potential scale reduction factor)

Introduced by Gelman and Rubin (1992).
Consider m chains of size n, with §0) denoting the ith draw from chain ;.
Comparison of the between-variance B and the within-variance W of the chains:
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R (aka potential scale reduction factor)

Introduced by Gelman and Rubin (1992).
Consider m chains of size n, with §0) denoting the ith draw from chain ;.
Comparison of the between-variance B and the within-variance W of the chains:

p— . /WiB

w

Inference from iterative simulation using multiple sequences
A Gelman, DB Rubin - Statistical science, 1992 - projecteuclid.org

The Gibbs sampler, the algorithm of Metropolis and similar iterative simulation methods are
potentially very helpful for summarizing multivariate distributions. Used naively, however,
iterative simulation can give misleading answers. Our methods are simple and generally ...

Y% DY Cited by 13999 Related articles All 20 versions Import into BibTeX 99

Recent improvement: rank-R Vehtari et al. (2021)
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Limitations of the different R

To summarize, the main limitations are:

® |t does not target a specific quantity of interest.
Converging according to which quantity?
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Local version of R, or R(x)

Idea: compute R on indicator variables 1(604) < x) € {0,1} for a given quantile x
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Local version of R, or R(x)

Idea: compute R on indicator variables 1(604) < x) € {0,1} for a given quantile x

Benefits:

® |tis local
= detects (non-)convergence locally

® Bernoulli variables
= all moments exist (no need for ranks) l

® Detects many false negatives I%(x)
1,034

® Scalar summary: 3 O
1.024
Roo = sup R(x) /\ /\
X 1.01
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Ii’oo where Rank-R is fooled

Uniform and Normal densities 200 replications of and R

AN

~

-3 -2 -1 0 1 2 3 1 1.01 1.02

https://theomoins.github.io/localrhat/Simulations.html
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Limitations of the different R

To summarize, the main limitations are:

It does not target a specific quantity of interest.
Converging according to which quantity?

It is not robust to certain types of non-convergence.
R and potentially also rank- R
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It suffers from a lack of interpretability.
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Theoretical properties

Assume chain Z = j has distribution F; (stationarity assumption, to focus on mixing). Then,

E[I(f <x)| Z=j]=Fj(x), and Var[l(§ <x)|Z=j]=Fj(x)— F(x)
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Theoretical properties

Assume chain Z = j has distribution F; (stationarity assumption, to focus on mixing). Then,

E[[(0 <x)|Z=j1=F(x), and Var[l(0 <x)|Z=j]=Fx) - F}(x)

B() = > FA(x) - (; > ﬁ(x)) , )= 3 (R - F0)

J=1
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Theoretical properties

Assume chain Z = j has distribution F; (stationarity assumption, to focus on mixing). Then,
E[[(0 <x)|Z=j1=F(x), and Var[l(0 <x)|Z=]]=Fj(x) - F}(x)

Theoretical B(x) and W(x):

R(x), the population version of R(x), can be written

L S S () — ()Y
ML RGO —F())
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Population R(x)

R(x)

i

Z] 1Zk J+1(Fk(x) F(X))

my_ 7, Fi(x)(1—Fj(x))
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Population R(x)

R(x)

i S (F)—Fi(0)°
m>T F()(I-F(x))

o LA
LI




Population R(x)

R(x)

e

> lzk ,H(F ()—Fi(x))*

m

Fi(x)(1—

Fi(x))

Properties:
® R=1 <= all Fj are equal
* R>1
°® Imi R=1
® R, invariant to monotone
transformation

IR
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To summarize, the main limitations are:

® |t does not target a specific quantity of interest.
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Convergence properties of R)(X)

Assumption of a Markov chain central limit theorem:

1
nm

J

Vam(F(x) = F(x)) <5 N (0,0%(x)), with F(x) =

m n

Z {009 < x}

1i=1
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Convergence properties of R)(X)

Assumption of a Markov chain central limit theorem:

n

Vim(F(x) = F(x)) -5 N (0,0%(x)), with F(x % iZH{g(iJ) < x}

j=1i=1
ESS(x) := nmw

— Number of samples to obtain the same variance in the i.i.d case.

Define a local effective sample size
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Convergence properties of R(x)

Assumption of a Markov chain central limit theorem:
Vam(F(x) = F(x)) <5 N (0,0%(x)), with F(x) = L SST e < x)
Fx)(1 - F(x))

()

— Number of samples to obtain the same variance in the i.i.d case.

Define a local effective sample size  ESS(x) := nm

Proposition (

Assume that all m chains are mutually independent and have converged to a common
distribution F. Then for any x € R,

ESS(x)(R?(x) —1) = x2,_; as n— oco.
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Threshold elicitation: R(x)

Let z;,—1,1- be the quantile of level 1 — o of the an_l distribution, and introduce the
associated threshold (type | error)

Zm—-1,1-« A
. [ - > H ~ (.
Rimal) = 1+ ZEE2 = B(R(6) 2 Rimale)) = o
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Threshold elicitation: R(x)

Let z;,—1,1- be the quantile of level 1 — o of the an_l distribution, and introduce the
associated threshold (type | error)

Rlim,a(X) =

Zm—-1,1-«

14 nobima P(R(x) > Rim.o(x)) ~ a.
VEsseg = PROZ Rina() = a
ESS(x) « m  Rim,a(X)
2 1.005
4 1.010
8 1.017
400 0.05 15 1.029
50 1.080
100 1.144
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Threshold elicitation: R(x)

Let z;,—1,1- be the quantile of level 1 — o of the an_l distribution, and introduce the
associated threshold (type | error)

Zm—-1,1-«

Rimu, = 1 ec/ N PI% zRima >~ (.
lim,a(X) + ESS(x) = (R(x) im.a(X)) ~ a
ESS(x) o m  Rim,a(X)

2 1.005
4 1.010
8 1.017
400 0.05 15 1,029
50 1.080
100 1.144

< 1.01 seems reasonable in the most common configurations.
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Threshold elicitation: :‘%OO?

A threshold for R., = sup, I%(X) require a result of convergence of the empirical process Ii’()
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Threshold elicitation: f%oo?

A threshold for R., = sup, I%(X) require a result of convergence of the empirical process Ii’()

Estimation using replications:

m 0.005 0.01 0.05 0.1

2 1018 1.016 1.012 1.010
3 1.023 1.022 1.016 1.014
4 1027 1.025 1.020 1.018
8 1.038 1.037 1.031 1.028
10 1.043 1.041 1.036 1.033
20 1.080 1.076 1.062 1.056

1.08q

1.067

1.041

1.02¢

) 6 8 10 20
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N N N\
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On the use of a local R
to improve MCMC convergence diagnostic

Théo Moins * Julyan Arbel = Anne Dutfoy ' Stéphane Girard *

March 7, 2022

Abstract

Diagnosing convergence of Markov chain Monte Carlo is crucial and remains an essentially
unsolved problem. Among the most popular methods, the potential scale reduction factor,
R ence of output chains to a target
distribution, based on a comparison of the between- and within-variances. Several improvements
have been suggested since its introduction in the 90s. Here, we aim at better understanding the
R behavior by proposing a localized version that focuses on quantiles of the target distribution.
This new version relies on key theoretical properties of the associated population value. It
naturally leads to proposing a new indicator Rec, which is shown to allow both for localizing
the Markov chain Monte Carlo convergence in different quantiles of the target distribution, and
at the same time for handling some convergence issues not detected by other & versions

commonly named R, is an indicator that monitors the con

T. Moins, J. Arbel, A. Dutfoy & S. Girard. (2022+) “On the use of a local R-hat to improve
MCMC convergence diagnostic" https://hal.inria.fr/hal-03600407/document
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Multivariate case

If parameter 6 is d-dimensional: simple multivariate extension by computing R on indicator
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Multivariate case

If parameter 6 is d-dimensional: simple multivariate extension by computing R on indicator

variables I(Ggu) < Xxi,... ,Gg’j) < Xq4)
As before, population version R(x), with x = (x1,...,xq):
m m 2
R(x) = |1+ D1 2okhejy1 (Fj(x) = F(x)) .

mST B - F(x)
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Multivariate case

If parameter 6 is d-dimensional: simple multivariate extension by computing R on indicator
variables I(9g"J) <X, ,95”1) < xq)

As before, population version R(x), with x = (x1,...,xq):

S (0 - Al
RO =\ s Fd - Fx)

®* R=1 <= all Fj are equal
e R>1

® R, invariant to monotone transformation = if convergence of margins, we can
compute R on M copulas (instead of M CDFs)
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Multivariate case: upper bound

Assume m = 2 chains, with copulas C; and G, (in dim d), index denoted by R+ (C1, G2).
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Multivariate case: upper bound

Assume m = 2 chains, with copulas C; and G, (in dim d), index denoted by R+ (C1, G2).

Let (C_, C;) two bounding copulas in the sense that

{C(u> < Gi(u) < Cy(u)

Yu € [0,1].
C(u) < G(u) < Cy(u)

Then Reo(C1, G) < Reo(C_, ).
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Multivariate case: upper bound

Assume m = 2 chains, with copulas C; and G, (in dim d), index denoted by R+ (C1, G2).

Let (C_, C;) two bounding copulas in the sense that

C.()< QW< Cl) o 1o
C_(u) < G(u) < Ci(u T
Then Roo(C1, G3) < Roo(C—, Cy).
Proposition ( )

Let W, and M, the lower and upper Fréchet—Hoeffding copulas in dimension d. Then

d+1
ROO(C1>C2) < Roo(Wd,Md): T
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Multivariate case: bound refinement

Fréchet—Hoeffding copula bounds (comonotone random variables):

d
Wy(u) := max {1 —d+ Z u,-,O} and My(u) :=min{u1,...,uq}.

i=1
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Fréchet—Hoeffding copula bounds (comonotone random variables):

d
Wy(u) := max {1 —d+ Z u,-,O} and My(u) :=min{u1,...,uq}.

i=1

Let us refine the upper bound by comparing with the independent copula My(u) := H,d:1 uj:

® Positive Lower Orthant Dependence (PLOD) copula:
Ng(u) < C(u) < My(u) for all u € [0,1]¢

® Negative Lower Orthant Dependence (NLOD) copula:
Wy(u) < C(u) < Ng(u) for all u € [0,1]¢
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Multivariate case: bound refinement

Fréchet—Hoeffding copula bounds (comonotone random variables):

d
Wy(u) := max {1 —d+ Z u,-,O} and My(u) :=min{u1,...,uq}.

i=1

Let us refine the upper bound by comparing with the independent copula My(u) := H,‘-i:l uj:

® Positive Lower Orthant Dependence (PLOD) copula:
Ng(u) < C(u) < My(u) for all u € [0,1]¢

® Negative Lower Orthant Dependence (NLOD) copula:
Wy(u) < C(u) < Ng(u) for all u € [0,1]¢

/\ This does not define a total order on copulas!
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Multivariate case: bound refinement

Let's stay in the case m = 2 chains.

For any two PLOD d-variate copulas C; and G, Ro(Ci, &) < Roo(My, My) with

{Roo(ng, Mp) = /3 + J5 ~1.038 ifd=2,

a1+ 0(1)) < Reo(Ma, Mg) < /9442 a5 d — co.
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Multivariate case: bound refinement

Let's stay in the case m = 2 chains.

For any two PLOD d-variate copulas C; and G, Ro(Ci, &) < Roo(My, My) with

{Rx(ng, Mp) = /3 + J5 ~1.038 ifd=2,

a1+ 0(1)) < Reo(Ma, Mg) < /9442 a5 d — co.

For any two NLOD d-variate copulas C; and G, Ryo(Ci, &) < Roo(My, Wy) with

1 1
Roo(Ma, Wy) = \/1 ts g -
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Multivariate case: bound refinement

Asymmetric behaviour:
® R(Mg, My) diverges with d at the (almost) same rate as R.(My, Wy),
° ROO(Hd, Wd) d—) 1.136.
—00

Illustration with m = 2 chains with bivariate normal distributions:

o2-5((Q-4 ). #-()€ ) o o
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[llustration with bivariate normal distributions:
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Multivariate case: bound refinement

[llustration with bivariate normal distributions:
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Multivariate case: bound refinement

[llustration with bivariate normal distributions:
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Multivariate case: bound refinement

[llustration with bivariate normal distributions:
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Multivariate case: bound refinement

RIM™) .= max(R%, R) consider symmetrically both directions of dependencies...
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Multivariate case: bound refinement

RIM™) .= max(R%, R) consider symmetrically both directions of dependencies...
... but in dimension d, 2971 different Ry to compute!

Dimensions
=Y
o

H 1Dir
All Dir
d=4

1.00 1.02 1.04 1.06 1.08 110 112 114
Values

Alternative: computation of R for a univariate function of the parameters

20/20
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