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Project background

Callum’s work:

>

PhD project (2019-2023) with the Office for Nuclear Regulation (ONR) via
the STOR-i centre for doctoral training

Main theme: investigating use of multivariate extreme value theory in the
context of nuclear regulation

Follows scoping project (Simpson, 2017) with LU seed money to investigate
concept of a “multivariate hazard curve”

Focus on “return curves” as a way to summarize risk associated to
combined effect of two (or potentially more) variables

Particular challenges:

> Estimation methodology under realistic dependence scenarios
» Non-stationarity of environmental variables



Hazard curves and return curves

A hazard curve (often called a return level plot by EVA practitioners) depicts
levels associated to a certain annual exceedance probability, 1/N.

Return Level Plot
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» Mathematically: plot of points {(N, xy)} for N and xy satisfying
Pr(X > xy) = 1/(n x N),
where n is the number of observations of X per year
» xy often called N-year return level. N is the return period.

» Summarizes the tail of a (stationary) univariate distribution



Hazard curves and return curves

A return curve provides a possible extension of the definition. Now consider
the N-year return curve:

RC(N) = {(XNayN) FPr(X >, Y > yw) = — >: N}

Example data

> Because the set of points {(xy, yn)} already represents a curve, helpful to
plot separately for different N

» Summarizes the tail of a (stationary) bivariate distribution



Project background

» Nuclear facilities should be designed to withstand extreme events with a
return period of N = 10,000 years

P> ONR Safety Assessment Principles: values should be derived
conservatively to take account of data and model uncertainties

» What if the 10,000 year event changes over time?

» Conservative principles suggest design to withstand the worst such event
over the time period

» Desire to understand more about what this means in the context of more
than one hazard

» This talk: estimation of return curves for non-stationary bivariate
distributions



Non-stationary return curves

Assume observations (X;, Y;),t = 1,..., T, whose distribution is influenced by
covariates Z;.

Non-stationary N-year return curve:

1
RC,,(N) = {(XN,yN) CPr(Xe > xn, Ye > ynlZr = z4) = . N}

Two sources of non-stationarity:
» Marginal distributions X; ~ Fy,, Y; ~ Fy,

> Well studied - but note we need to estimate full non-stationary cdf,
not just the tail

» Dependence structure / copula

> Sparse literature, especially for extremes



Non-stationary dependence

Joint distribution of (Fy,(X;), Fy,(Y:)) called the copula:

Ci(u,v) = Pr(Fx,(X;) < u, Fy,(Y:) <)

Assume this changes with covariates Z;.




Non-stationary extremal dependence measures

Extremal dependence often summarized by measures derived from the copula:

Tail dependence coefficient

xo = lim P (Xe) > u Fy (Y1) > u)

u—1 1—u

€ [o,1]

Useful if variables exhibit so-called asymptotic dependence, meaning x; > 0.
Otherwise x; = 0 even as the copula changes with Z,.



Non-stationary extremal dependence measures

Extremal dependence often summarized by measures derived from the copula:
Tail dependence coefficient

xo = lim P (Xe) > u Fy (Y1) > u)

u—1 1—u

€ [o,1]

Useful if variables exhibit so-called asymptotic dependence, meaning x; > 0.
Otherwise x; = 0 even as the copula changes with Z,.

Residual tail dependence coefficient

log(1 —
7 = lim og )

e (0,1
u—1log Pr(Fx,(X;) > u, Fy,(Y¢) > u) 0.1]

Useful if variables exhibit asymptotic independence, where typically 1, < 1.
Otherwise 7); = 1 even as the copula changes with Z,.
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Non-stationary extremal dependence measures
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Returning to return curves

» Measures like 7 and x summarize dependence in the region where both
variables are large

» Do not provide enough information to construct a return curve

Focus on the angular dependence function (Wadsworth & Tawn, 2013) which
describes extremal dependence in any direction where at least one variable is
large.



Angular dependence function

Let X, = —log(1 — Fx, (X)), ¥; = —log(1 — Fy,(Y;)) have stationary exponential
margins.

Residual tail dependence coefficient

Pr (min {)N(t, YQ} > x + u| min {)N(,, )N/t} > u) — exp{—x/n:}, u— 00




Angular dependence function

Let X, = —log(1 — Fx, (X)), ¥; = —log(1 — Fy,(Y;)) have stationary exponential
margins.

Angular dependence function For w € (0, 1)

X Y X
Pr (min{t, : } > x + u| min {r, ‘ } > u) — exp {—xA(w)}
w l—w w l—w




Angular dependence function

» Generalizes concept of residual tail dependence coefficient: 1/ = 2\(1/2)
> A(w) > max(w, 1 —w)
> Asymptotic dependence: A\(w) = max(w, 1 — w)

» Independence: A\(w) =1

Can be considered in a non-stationary context (like 7, x). Denote this by A;(w).

Issue with all non-stationary dependence measures is estimation: we typically
do not have repeated samples for a given covariate value z;.
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Examples
Bivariate normal, p=0.9 ADF
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Examples

Bivariate normal, p=-0.5 ADF
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Estimation of non-stationary ADF

Define K, ; := min {& %} For a high threshold u we have

Pr(KW,[ > v+ U|KW7[ > U,Zt = Zt) ~ eXp{_A[(W)V}

For fixed w consider quantile regression on the distribution of K,, (|Z, = z,. For
g1 < g; near 1, we find sequences u, ¢, v,, ; such that

Pr(l(w_’t > uW,l’|Zt — Zt) =1- q1
Pr(KWJ» > Vw,t + uwﬁl’|Zt = Zt) =1-— qz

Combining expressions:

1—q2
17q1

~ exp {—)\t(w)vw.’t}



Estimation of non-stationary ADF

Initial estimator at point w

St(w>1|og(”’2)

Vw,t 1— q1

For stability, we repeat this procedure over several pairs of high quantiles

(91.j:92),j = 1,..., mand take the average as an estimator:
« T e 1 1—
Ar(w) =~ —— Iog< J
) m Z Vw,t.j T=q,

J=1



Smoothing over w

Procedure is repeated on a grid of w values {wy,..., w,} € (0,1) giving

Ae(wi), ooy A(wa)
for each value of our covariates z;.

To smooth over w, we use Bernstein polynomials, with the non-smoothed
estimates as input into a suitable objective function.



Performance of estimators

Performance over covariate (time):

w=0.1 w=03 w=05
Ve i< =<2
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Time Time Time

Performance across w € (0, 1)

at three fixed time points:

t=1 t=ni2 t=n
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Deriving a return curve from \¢(w)

Let p = 1/(n x N), and for any w € (0, 1), define {r, ;} as

1
Fwit = —% Iog( P ),
)\t(W) 1— Ch

implying ?”q] = exp{—ruh(w)}.




Deriving a return curve from \¢(w)

Let p = 1/(n x N), and for any w € (0, 1), define {r, ;} as

1
(i)
)\t(W) 1— CI1
implying ?”q] = exp{—ruh(w)}.
Define (xu 1, Yw.t) = (W(ry,t + tw), (1 — w)(rw + uy,r)). We have

Myt :=

Pr(Xe > xu,t, Ye > Yue | Ze = 2;) = Pr(Ky,e > rue + e | Ze = z¢)
= Pr(l(WJ > I’W_’t =+ uW,[ | KW’[ > uW,th = Zt)
X Pr(KWA’t > uW7l’ ‘ Z[ = Zt)
~ exp{—ru. (W)} Pr(Ku.s > ty | Zi = z¢)

meaning that the set {(xy+, yw.r)} over a fine grid of points W = {ws, ..., wy}
provides an approximation of RC,,(N) on exponential margins.



Deriving a return curve from A\;(w)

Again, improve stability of estimation via averaging over quantiles ¢ ;,
Jj=1,...,m.

Final estimator of the return curve on exponential margins:
m ) m )

RC,,(N) = Zx{a/,t/mvzyll/v,t/m

j= j=1 wew

Last step: reverse marginal transformation to original margins. For estimates
Fx,, Fy, of the marginal cdfs, apply transformation

(F'0—e ™), F'(1—e))

to the coordinates of the return curve.



Motivating example - UKCP18 data

» We consider 1980-2080 temperature and relative humidity projections
at a location near to an existing licensed site

» RCP8.5 “worst-case” emissions scenario
Focus on summer data as trends in dependence vary by season

P> Let 0 < RH < 100 represent relative humidity. We define a dryness
variable: Dr := 100 — RH

» Combination of high temperature and high dryness relevant for nuclear
safety (Knochenhauer and Louko, 2004)

> Relevant covariate is time: z; = t (true drivers for change are incorporated
into climate model)



Trends in the data
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Modelling procedure

1. Remove marginal trends using methods proposed in Davison & Smith
(1990) and Eastoe & Tawn (2009)

1.1 Assume location-scale model: X; = pix; + oxRe, Ve = iyt + 0y S

1.2 Estimate fux ¢, fby 1, Ox.t, Oy, using GAMs

1.3 Derived variables (R;, S;) should be close to stationary

1.4 Fit non-stationary generalized Pareto distribution to tails to capture
any residual non-stationarity in the tails

2. Transform data to exponential margins

3. Obtain estimate of non-stationary ADF through quantile regression +
smoothing

4. Calculate return curve estimates up to the year 2080

5. Back-transform estimates to original margins



Non-stationary ADF
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7; estimates

Rolling window n estimates
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Summer return curves

Estimates of RC,,(10,000):
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Conclusions

» Estimated return curves demonstrate increasing marginal trends for
temperature and dryness, and increasing dependence over time

» Severe high temperature-dryness combinations much more likely in
future climate scenarios (based on RCP8.5 emissions)

» Estimates suggest change from asymptotic independence to asymptotic
dependence by end of timeframe



Discussion

» Framework is best suited to asymptotically independent variables: under
asymptotic dependence, A\;(w) = max(w, 1 — w) does not depend on z;

» But return curve estimates do inherit non-stationarity as they depend on
estimates of the sequence {u,, ;}

» Reassuring for data like these that appear to transition between states

» Other methodology may be preferable for purely asymptotically
dependent data (e.g. Castro-Camilo et al., 2018)

» Uncertainty estimation: Difficult for non-stationary data. Current
approach: (block) bootstrap data in 5 year intervals, treating these as
stationary



Thanks for your attention!
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