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Context

Limits of extrapolation associated with Bayesian extreme value models.

Aim: Understand the risks of hazardous meteorological events.

Inondations : le Lot-et-Garonne touché par la ”crue
la plus importante depuis quarante ans”
(Source: lemonde.fr, Février 2021)
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MCMC

Bayesian inference on θ ∼ π =⇒ computation of Eπ[f (θ)] =
∫
f (θ)π(θ)dθ.

MCMC (Markov Chain Monte Carlo):

Monte Carlo Markov Chain

E[f (θ)] ≈ 1
n

∑n
i=1 f (θi ) θi+1 | θi ∼ P(θi , ·)

• Algorithms: Metropolis–Hastings, Gibbs sampling, Hamiltonian Monte Carlo (HMC)
(Neal, 2011), No U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014), etc.

• Librairies: JAGS (Plummer et al., 2003), Stan (Carpenter et al., 2017), PyMC3
(Salvatier et al., 2016)...
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Has the chain(s) converged? Need for multiple chains
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R̂ (aka potential scale reduction factor)

Introduced by Gelman and Rubin (1992).
Consider m chains of size n, with θ(i ,j) denoting the ith draw from chain j .
Comparison of the between-variance B and the within-variance W of the chains:

R̂ =
√

Ŵ+B̂
Ŵ

Between var : B̂ =
1

m − 1

m∑
j=1

(θ̄
(.,j) − θ̄

(.,.)
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Recent improvement: rank-R̂ Vehtari et al. (2021)
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Limitations of the different R̂

To summarize, the main limitations are:

• It does not target a specific quantity of interest.
Converging according to which quantity?

• It is not robust to certain types of non-convergence.
R̂ and potentially also rank-R̂

• It suffers from a lack of interpretability.
What is R associated to R̂?

• It must be compared to an arbitrary chosen threshold.
R̂ ≥ 1.1? 1.01?

• It is associated with a univariate parameter.
How to manage multiple parameters?
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Local version of R̂ , or R̂(x)

Idea: compute R̂ on indicator variables I(θ(i ,j) ≤ x) ∈ {0, 1} for a given quantile x

Benefits:

• It is local
=⇒ detects (non-)convergence locally

• Bernoulli variables
=⇒ all moments exist (no need for ranks)

• Detects many false negatives

• Scalar summary:

R̂∞ = sup
x

R̂(x)

−4 −2 0 2 4

↓
R̂(x)

x
−4 −2 0 2 4

1

1.01

1.02

1.03
R̂∞
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R̂∞ where Rank-R̂ is fooled

Uniform and Normal densities 200 replications of Rank-R̂ and R̂∞

−3 −2 −1 0 1 2 3

→

1 1.01 1.02

https://theomoins.github.io/localrhat/Simulations.html
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Theoretical properties

Assume chain Z = j has distribution Fj (stationarity assumption, to focus on mixing). Then,

E[I (θ ≤ x) | Z = j ] = Fj(x), and Var [I (θ ≤ x) | Z = j ] = Fj(x)− F 2
j (x)

Theoretical B(x) and W (x):

B(x) =
1

m

m∑
j=1

F 2
j (x)−

 1

m

m∑
j=1

Fj(x)

2

, W (x) =
1

m

m∑
j=1

(
Fj(x)− F 2

j (x)
)
.

Proposition (Moins et al., 2022)

R(x), the population version of R̂(x), can be written

R(x) :=

√
W (x) + B(x)

W (x)
=

√√√√1 +

∑m
j=1

∑m
k=j+1 (Fk(x)− Fj(x))

2

m
∑m

j=1 Fj(x)(1− Fj(x))
.
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Population R(x)

R(x) =

√
1 +

∑m
j=1

∑m
k=j+1(Fk (x)−Fj (x))

2

m
∑m

j=1 Fj (x)(1−Fj (x))

Properties:

• R ≡ 1 ⇐⇒ all Fj are equal

• R ≥ 1

• lim±∞ R = 1

• R∞ invariant to monotone
transformation
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Limitations of the different R̂

To summarize, the main limitations are: R̂∞
• It does not target a specific quantity of interest.
Converging according to which quantity?

• It is not robust to certain types of non-convergence.
R̂ and potentially also rank-R̂

• It suffers from a lack of interpretability.
What is R associated to R̂?

• It must be compared to an arbitrary chosen threshold.
R̂ ≥ 1.1? 1.01?

• It is associated with a univariate parameter.
How to manage multiple parameters?
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Convergence properties of R̂(x)

Assumption of a Markov chain central limit theorem:

√
nm(F̂ (x)− F (x))

d−→ N
(
0, σ2(x)

)
, with F̂ (x) =

1

nm

m∑
j=1

n∑
i=1

I{θ(i ,j) ≤ x}

Define a local effective sample size ESS(x) := nm
F (x)(1− F (x))

σ2(x)

↪→ Number of samples to obtain the same variance in the i.i.d case.

Proposition (Moins et al., 2022)

Assume that all m chains are mutually independent and have converged to a common
distribution F . Then for any x ∈ R,

ESS(x)(R̂2(x)− 1)
d−→ χ2

m−1 as n → ∞.
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Threshold elicitation: R̂(x)

Let zm−1,1−α be the quantile of level 1− α of the χ2
m−1 distribution, and introduce the

associated threshold (type I error)

Rlim,α(x) :=

√
1 +

zm−1,1−α

ESS(x)
=⇒ P(R̂(x) ≥ Rlim,α(x)) ≃ α.

ESS(x) α m Rlim,α(x)

400 0.05

2 1.005
4 1.010
8 1.017
15 1.029
50 1.080
100 1.144

↪→ 1.01 seems reasonable in the most common configurations.
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Threshold elicitation: R̂∞?

A threshold for R̂∞ = supx R̂(x) require a result of convergence of the empirical process R̂(·).

Estimation using replications:

m 0.005 0.01 0.05 0.1

2 1.018 1.016 1.012 1.010
3 1.023 1.022 1.016 1.014
4 1.027 1.025 1.020 1.018
8 1.038 1.037 1.031 1.028
10 1.043 1.041 1.036 1.033
20 1.080 1.076 1.062 1.056

m

α = 0.005
α = 0.01

α = 0.05

α = 0.1

1.02

1.04

1.06

1.08

2 4 6 8 10 20
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Preprint!

T. Moins, J. Arbel, A. Dutfoy & S. Girard. (2022+) “On the use of a local R-hat to improve
MCMC convergence diagnostic” https://hal.inria.fr/hal-03600407/document
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Multivariate case

If parameter θ is d-dimensional: simple multivariate extension by computing R̂ on indicator

variables I (θ
(i ,j)
1 ≤ x1, . . . , θ

(i ,j)
d ≤ xd)

As before, population version R(x), with x = (x1, . . . , xd):

R(x) =

√√√√1 +

∑m
j=1

∑m
k=j+1 (Fj(x)− Fk(x))2

m
∑m

j=1 Fj(x)(1− Fj(x))
.

• R ≡ 1 ⇐⇒ all Fj are equal

• R ≥ 1

• R∞ invariant to monotone transformation =⇒ if convergence of margins, we can
compute R on M copulas (instead of M CDFs)
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Multivariate case: upper bound

Assume m = 2 chains, with copulas C1 and C2 (in dim d), index denoted by R∞(C1,C2).

Lemma

Let (C−,C+) two bounding copulas in the sense that{
C−(u) ≤ C1(u) ≤ C+(u)
C−(u) ≤ C2(u) ≤ C+(u)

∀u ∈ [0, 1]d .

Then R∞(C1,C2) ≤ R∞(C−,C+).

Proposition (Moins et al., 2022)

Let Wd and Md the lower and upper Fréchet–Hoeffding copulas in dimension d . Then

R∞(C1,C2) ≤ R∞(Wd ,Md) =

√
d + 1

2
.
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Multivariate case: bound refinement

Fréchet–Hoeffding copula bounds (comonotone random variables):

Wd(u) := max

{
1− d +

d∑
i=1

ui , 0

}
and Md(u) := min {u1, . . . , ud}.

Let us refine the upper bound by comparing with the independent copula Πd(u) :=
∏d

i=1 ui :

• Positive Lower Orthant Dependence (PLOD) copula:
Πd(u) ≤ C (u) ≤ Md(u) for all u ∈ [0, 1]d

• Negative Lower Orthant Dependence (NLOD) copula:
Wd(u) ≤ C (u) ≤ Πd(u) for all u ∈ [0, 1]d

!△This does not define a total order on copulas!
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Multivariate case: bound refinement

Let’s stay in the case m = 2 chains.

Corollary (Moins et al., 2022)

For any two PLOD d-variate copulas C1 and C2, R∞(C1,C2) ≤ R∞(Πd ,Md) withR∞(Π2,M2) =
√

1
2 + 1√

3
≈ 1.038 if d = 2,√

d
2 log d (1 + o(1)) ≤ R∞(Πd ,Md) ≤

√
d+1
2 as d → ∞.

Corollary (Moins et al., 2022)

For any two NLOD d-variate copulas C1 and C2, R∞(C1,C2) ≤ R∞(Πd ,Wd) with

R∞(Πd ,Wd) =

√
1 +

1

2

1(
1− 1

d

)−d − 1
.
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Multivariate case: bound refinement

Asymmetric behaviour:

• R∞(Πd ,Md) diverges with d at the (almost) same rate as R∞(Md ,Wd),

• R∞(Πd ,Wd) −−−→
d→∞

1.136.

Illustration with m = 2 chains with bivariate normal distributions:

θ(i ,1) ∼ N
((

0
0

)
,

(
1 0
0 1

))
, θ(i ,2) ∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, with ρ ∈ (−1, 1).
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ρm

−1 −0.5 0 0.5 1

1
1.

03
1.

06
1.

09
1.

12
1.

15

R̂
R̂∞
R∞

• PLOD and NLOD bounds when
|ρ| → 1,

• Asymmetry which favour NLOD
when d = 2,

• It can be inverted by computing

R̂−
∞ on I{θ(·)1 ≤ x1, θ

(·)
2 ≥ x2}.
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Multivariate case: bound refinement

R̂
(max)
∞ := max(R+

∞,R−
∞) consider symmetrically both directions of dependencies...

... but in dimension d , 2d−1 different R∞ to compute!

d = 2

d = 3

d = 4

d = 5

d = 6

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14

Values

D
im

en
si

on
s

1 Dir
All Dir

Alternative: computation of R̂∞ for a univariate function of the parameters
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