
Extreme value statistics born out of domains of attraction

Extreme value statistics born out of domains of
attraction
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Man can believe the impossible, but man can never believe the
improbable...

[Oscar Wilde, Intentions, 1891]

For many phenomena records must be broken in the future, so if a
design is based on the worst case of the past, then we are note
really prepared for the future.

[Preface of the EVT & Applications conf. proceedings, May 1993]
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Outline

1. Brief introduction to EVT (i.i.d. case);

1.1 EVT at work;
1.2 Estimation of an event with an 10−4 occurrence probability.

2. EVT in the non-id case.

2.1 space-time trend;
2.2 pooling spatially dependent extremes.
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Motivation

Extreme Value Theory (EVT)

◮ The goal of EVT is to define, characterise and estimate
hallmark features of extreme events and of the possible
dependence between them.

◮ We refer to an extreme event as an event that is so rare that
may have never been observed in the past.

Two related estimation problems:

1. that of a probability of an extreme event;
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Motivation

Extreme Value Theory (EVT)

◮ The goal of EVT is to define, characterise and estimate
hallmark features of extreme events and of the possible
dependence between them.

◮ We refer to an extreme event as an event that is so rare that
may have never been observed in the past.

Two related estimation problems:

1. that of a probability of an extreme event;

2. estimation of a large value is exceeded with some pre-assigned
probability (near zero)
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In 2009, the UK was battered by heavy rainfall with the record
high of 316.4mm in Cumbria.
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Two related questions

Question 1

◮ What are the chances of a repeat of such an extreme event?
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Two related questions

Question 1

◮ What are the chances of a repeat of such an extreme event?

◮ It was determined that is was an event with a 1/500
occurrence probability (in a given year).
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In 2015, Storm Desmond ravaged the UK, with heavy rain and
strong winds

(Source: Christopher Furlong/Getty Images)
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Two related questions

Question 2

◮ On December 5th, 2015, Storm Desmond broke the UK’s
24-hour rainfall record with 341.4mm of rainfall in Cumbria

◮ How high must be a flooding barrier in order to withstand a 1
in 10,000-year event, i.e. an event with occurrence probability
of 1/10, 000 in a given year?
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Firstly, tail probability estimation

◮ We need to formulate this first question into an estimation
problem.

◮ We wish to estimate the exceedance (or tail) probability
P(X > x) = 1− F (x) of an already large observation x .

Empirical distribution function (edf):

If (X1,X2, . . . ,Xn) consists of random a sample of n days of
rainfall distributed according to F , a consistent estimator for F (x)
is the empirical distribution function:

1− Fn(x) =
#{Xi greater than x}

n
=

1

n

n!

i=1

1{Xi>x}
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Firstly, tail probability estimation
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Secondly, via inverse (quantile) function

Caveat: what if n << 10, 000 ?
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Extreme Value Theory (EVT)

The answer is, of course, in EVT!

This sort of estimation problems are tractable within the
framework of extreme value theory.

◮ Notably, this is due to the Extreme Value theorem, analogous
to the Central Limit theorem.
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Extreme Value (types) Theorem

Fisher & Tippett (1928), Gnedenko (1943), de Haan (1970)

If there exist constants an > 0, bn (n = 1, 2, . . .) such that

lim
n→∞

P
"max(X1, . . . ,Xn)− bn

an
≤ x

#
= lim

n→∞
F n(anx + bn) = G (x),

G non-degenerate, for all continuity points x , then

G (x) = Gγ(x) := exp
$
−(1 + γx)−1/γ

%
,

for some γ ∈ R and all x with 1 + γx > 0.

Gγ is the Generalised Extreme Value (GEV) distribution

This introduces the extreme value index γ ∈ R
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Extreme value distributions

Probability density function dGγ(x)/dx for: γ = 1/2 (Fréchet; red), γ = 0 (Gumbel;

blue) and γ = −1/2 (Weibull; orange)
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Extreme value distributions

These graphs of probability densities of Gγ suggest that:

◮ If γ > 0, then G←
γ (1) = ∞.

◮ If γ = 0, then G←
γ (1) = ∞.

◮ If γ < 0, then G←
γ (1) = − 1

γ , meaning that no observations
beyond −1/γ are possible.
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Domain of attraction

A distribution function F is in the domain of attraction of Gγ for
some γ ∈ R if the normalised maximum Xn:n of independent
observables X1,X2, . . . ,Xn, . . . from this F converges to the GEV
distribution function Gγ , as n → ∞.

Notation: F ∈ D(Gγ)

Recall the graphs of probability densities of Gγ .

We have a similar behaviour for F :

◮ If γ > 0, then F←(1) = ∞.

◮ If γ < 0, then F←(1) < ∞, meaning all observations are
bounded from above.

◮ If γ = 0, then F←(1) = ∞ or F←(1) < ∞.
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An equivalent formulation of the EVT for exceedances

◮ F ∈ D(Gγ) for some γ ∈ R iff

lim
n→∞

− n log F (anx + bn) = − logGγ(x) = (1 + γx)−1/γ ,

all x ∈ R such that 1 + γx > 0.

◮ With a(u) := a[u] and b(u) := b[u],

lim
u→∞

u
&
1− F

'
a(u)x + b(u)

()
= (1 + γx)−1/γ , (1)

for some γ ∈ R and all x such that x > 0 and 1 + γx > 0.

Take u = n/k → ∞ in the extreme value condition (1).
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Peaks over Threshold (POT) approach

Taking u = n/k → ∞ in the extreme value condition (1):

n

k

*
1− F

&
a
'n
k

(
x + b

'n
k

()+
≈ (1 + γx)−1/γ .

Writing t := a
'n
k

(
x + b

'n
k

(
, we get

1− F (t) ≈ k

n

&
1 + γ

t − b(n/k)

a(n/k)

)−1/γ
, as t ↑ F←(1).

This approximation is valid for any t large and can even be used
for t > Xn:n.

➠ Extrapolation beyond the range of the available observations

18 / 37



Extreme value statistics born out of domains of attraction

Block Maxima versus Peaks over Threshold
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Estimation

Typically we wish to estimate γ, a(n/k) and b(n/k):

◮ Consider intermediate (and extreme) order statistics
Xn:n ≥ Xn−1:n ≥ . . . ≥ Xn−k:n, where k = k(n) ∈ (0, n], such
that k → ∞ and k/n → 0, as n → ∞.

◮ Estimators for the above unknowns are often asymptotically
linear functionals of these order statistics through
, x∗

Xn−k:n
ψ(s/Xn−k:n)dFn(s), where Fn(x) :=

1
n

n-
i=1

1{Xi :n≤x}
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Semiparametric estimators for an extreme quantile

The aim now is to estimate xp such that p = pn < 1/n.
Let k = k(n) be an intermediate sequence and suppose npn = o(k).

◮ F ∈ D(Gγ) for some γ ∈ R,

x̂pn := b̂
!n
k

"
+ â

!n
k

"
#

k
npn

$γ̂

− 1

γ̂

◮ F ∈ D(Gγ) for some γ ∈ R, including γ = 0 and F←(1) < ∞. Set
γ+ = max(0, γ),

x̂pn := Xn,n +
# k

npn

$γ̂+
%
Xn−k,n −

2γ̂+

log 2

& 1

1/2

s γ̂+Xn−[2ks],n
ds

s

'

(El-Methni, Girard and CN, 2022+)
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Semiparametric estimators for an extreme quantile

The aim now is to estimate xp such that p = pn < 1/n.
Let k = k(n) be an intermediate sequence and suppose npn = o(k).

◮ F ∈ D(Gγ) for some γ ∈ R,

x̂pn := b̂
!n
k

"
+ â

!n
k

"
#

k
npn

$γ̂

− 1

γ̂

◮ General right endpoint estimator w.r.t. γ ≤ 0 and F←(1) < ∞,

x̂0 := Xn,n + Xn−k,n −
1

log 2

k−1(

i=0

log
!
1 +

1

k + i

"
Xn−k−i,n

(Fraga Alves and CN, 2014)
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Boeing 747 taxiway deviations at Ted Stevens Anchorage
International Airport

Data measurements (in ft) collected from 9/24/2000 to 9/27/2001 (n = 4900)
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Part 2 - Motivation
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Space-time scedasis

Consider independent random vectors (Xi ,1,Xi ,2, . . .Xi ,m)i=1,2,....

◮ For i = 1, . . . , n, j = 1, . . . ,m, the marginal distribution
functions Fi ,j(x) = P{Xi ,j ≤ x} are tail equivalent, i.e., we
assume that there exists a distribution function F0 ∈ D(Gγ)
such that for all i and j

lim
x↑x0

P{Xi ,j > x}
P{X0 > x} = c

& i

n
, j
)
,

where x0 = F←
0 (1) and c(·, j) is a positive continuous function

for each j = 1, 2, . . . ,m.

◮ The scedasis c is made unique through
-m

j=1 Cj(1) = 1, where

Cj(t) :=

. t

0

c(u, j)

m
du
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Little (temporal) scedasis c(·, j)

Daily rainfall data, reanalysis data for m = 44 stations across the UK: warm

season (left) and cold season (right). Estimation with k = 2000.
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Interpretation of space-time trend

◮ For all i = 1, . . . , n, j = 1, . . . ,m, there is a unique (random)
threshold XN−k:N ;

◮ At location j = 1, . . . ,m, the integrated scedasis Cj(t) gives
the accumulated frequency of threshold exceedances up to
time t = i/n;

◮ For all i , j , the EVI γ ∈ R, determines how extremes amplify.
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Normalised (temporal) scedasis c(·, j)

Daily rainfall data (reanalysis data) for m = 44 stations across the UK: warm

season (left) and cold season (right).Estimation with k = 2000.
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Scedasis embedding in threshold selection
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Scedasis embedding in threshold selection

X
(h)
n−[c(θ)k],n

− Xn−k,n = aθ

! n

c(θ)k

"#
c(θ)

$−γ(θ) − 1

γ(θ)
+ op

!
aθ

! n

c(θ)k

""
,

uniformly in θ, with c(θ) > 0 such that
%
S(1/|S|) c(θ) dθ = 1. The interpretation of

c(θ) is that of the rate of extremes per directional window of width h > 0.
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Scedasis embedding in threshold selection

Polar plot with hypotheses testing decisions at the α = 5% significance level.

Orange: γ(θ) = 0, x0 = ∞ Yellow: γ(θ) = 0, x0 < ∞ Blue: γ(θ) < 0.
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Integrated scedasis – basis for inference

Theorem 3 (Einmahl, Ferreira, de Haan, CN and Zhou, 2022):

With a Skorokhod construction, for some γ ∈ R,

max
1≤j≤m

sup
0<t≤1

////
√
k
&
0Cj(1)− Cj(t)

)

−
"
Wj

'
1,Cj(t)

(
− Cj(t)

m!

r=1

Wr

'
1,Cr (1)

(#////
P−→

n→∞
0,

where
'
W1(1, ·), . . . ,Wm(1, ·)

(
is a Gaussian vector-valued random

field, with each Wj(1, ·) being a standard Wiener process such that

Cov
#
Wj1

!
1,Cj1(t1)

"
,Wj2

!
1,Cj2(t2)

"$
=

1

m

& t1∧t2

0

Rj1,j2

!
c(u, j1), c(u, j2)

"
du.
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Two tests

1. H0,j : Cj(t) = tCj(1) for 0 ≤ t ≤ 1, i.e., the scedasis c(·, j) is
constant over time. Under H0,j , the limit in distribution of the

process
$√

k
'0Cj(t)− t 0Cj(1)

%
0≤t≤1

is essentially Brownian
bridge.

2. H0 : Cj(1) =
1
m for all j = 1, 2, . . . ,m, i.e., the total scedasis

is constant over the various locations. We perform the test by
checking whether the limit vector (in distribution) of

*√
k
&
0C1(1)−

1

m

)
,
√
k
&
0C2(1)−

1

m

)
, . . . ,

√
k
&
0Cm(1)−

1

m

)+

has mean zero. This will be done via an adapted χ2-test
through appropriate quadratic form of this asymptotically
normal random vector.
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Application to extreme rainfall

The data:

◮ The considered data amounts to daily precipitation totals from
three regions in North-West Germany, Bremen, Niedersachsen
and Hamburg, with available observations from 1931 to 2014;

◮ There are in total m = 49 stations spanning n = 84 years;

◮ Two seasons were considered separately, a cold (winter)
season from November to March and a warm (summer)
season from May to September;

◮ Tally of N = 49× 3561 for winter and N = 49× 3552 for
summer.
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Detecting a temporal trend in extremes

Test 1 H0,j : Cj(t)/Cj(1) = t for 0 ≤ t ≤ 1
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Figure: Tests for homogeneity over time drawing on k = 1000. Bonferroni’s
correction for the nominal level of the test α∗ = 5%/49 ≈ 0.1%. Overall, p-values
soar in the summer and plunge in the winter at many locations.
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Test 2 – Evidence of a trend across space?
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Thank you for listening!
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