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ABSTRACT

The desire to improve short-term predictions of wind speed
and direction has motivated the development of a spatial
covariance-based predictor in a complex valued multichannel
structure. Wind speed and direction are modelled as the
magnitude and phase of complex time series and measure-
ments from multiple geographic locations are embedded in
a complex vector which is then used as input to a multi-
channel Wiener prediction filter. Building on a C-linear
cyclo-stationary predictor, a new widely linear filter is de-
veloped and tested on hourly mean wind speed and direction
measurements made at 13 locations in the UK over 6 years.
The new predictor shows a reduction in mean squared error
at all locations. Furthermore it is found that the scale of
that reduction strongly depends on conditions local to the
measurement site.

Index Terms— Widely linear processing, prediction,
complex data, Wiener filter

1. INTRODUCTION

The short-term prediction of wind power generation is essen-
tial for reliable and economic power system operation and for
that reason is the subject of much current research, see [1, 2]
and references therein. A number of methods have been de-
veloped to model the spatio-temporal relationship between
multiple measurement locations to produce accurate predic-
tions [3–5]. In addition, wind direction is frequently mod-
elled alongside wind speed in a complex-valued time series
as in [6], among others. The spatio-temporal problem lends
itself to a multichannel treatment, and complex valued filter-
ing can be employed to predict both wind speed and direction
as in [5].

Linear operations can be applied to complex quantities
(then termed strictly linear or C-linear) in exactly the same
way as to real ones, but with some significant limitations that
must be appreciated. Consider the linear transformation

y = kx (1)

with x = xr + jxi and y = yr + jyi. Writing the product in
terms of its real and imaginary parts

[

yr
yi

]

=

[

Re k −Im k
Im k Re k

] [

xr

xi

]

(2)

and comparing that to the more general R2 transformation

[

yr
yi

]

=

[

M11 M12

M21 M22

] [

xr

xi

]

(3)

illustrates the limitation: the R2 transformation is only C-
linear iff M11 = M22 and M12 = −M21. The complex
equivalent of (3) is the widely linear transformation

y = k1x+ k2x
∗ . (4)

Detailed discussions on widely linear processing can be found
in [7, 8].

Wind measurements have been modelled as a C-linear
cyclo-stationary time series in [5] with computational effi-
ciency in mind. However, in order to quantify the potential
gains that could achieved, in this paper we will explore a
widely linear model even though this comes at the expense
of doubling the filter order.

The data model is described in Section 2 and the minimum
mean squared error predictor is derived in 2.1, with the cyclo-
stationary estimation of the covariance matrices outlined in
2.2. The data used for testing and test results are presented in
Section 3 and conclusions are drawn in Section 4.

2. DATA MODEL AND PREDICTION

At discrete time n, the wind speed and direction at M loca-
tions are embedded as the magnitude and phase of a com-
plex valued vector x[n] ∈ C

M . The spatial covariance ma-
trix is defined based on the expectation operator, E{·}, as

Rxx[n, τ ] = E{x[n]xH[n − τ ]}, where xH[n] denotes the
Hermitian transpose of x[n] and τ is a general lag parameter.

Since we are pursuing widely linear processing, we also
define the complementary covariance matrix based on the ex-

pectation operator as R̃xx[n, τ ] = E{x[n]xT[n − τ ]}. In
addition, by considering the augmented vector x[n], which
is the concatenation of x[n] and its conjugate, we can define

the augmented covariance matrix Rxx[n, τ ] = E{x[n]xH[n−
τ ]},

Rxx[n, τ ] = E

{[

x[n]
x∗[n]

]

[

xH[n− τ ] xT[n− τ ]
]

}

=

[

Rxx[n, τ ] R̃xx[n, τ ]

R̃
∗

xx[n, τ ] R
∗

xx[n, τ ]

]

. (5)

Notice that since Rxx is positive semi-definite, and therefore

has a positive determinant, the limit |Rxx|
2 ≥ |R̃xx|

2 sets an

upper bound for the magnitude of R̃xx.
It is well known that wind speed and wind direction are

likely non-stationary and non-linear, both can be volatile
and, direction particularly, can depend heavily on the phys-
ical characteristics of the measurement site. Furthermore,
the seasonal and diurnal trends that characterise our human
experience of the wind are themselves variable. In the suc-
ceeding text, we ignore the potential non-linear nature of the



Ree[n] = E
{

(x[n]−WH
nxn−∆)(x

H[n]− x
H
n−∆W n)

}

,

= Rxx[n, 0]− E{x[n]xH
n−∆}W n −WH

nE{xn−∆x
H[n]}+WH

nE{xn−∆x
H
n−∆}Wn ,

= Rxx[n, 0]−Rxx[n]W n −WH
nR

H
xx[n] +WH

nRxx
[n]W n , (9)

where

Rxx[n] = [ Rxx[n,∆] , Rxx[n,∆+1] , . . . , Rxx[n,∆+N−1] ,

R̃xx[n,∆] , R̃xx[n,∆+1] , . . . , R̃xx[n,∆+N−1] ] , (10)

R
xx
[n] =

[

Rxx[n] R̃xx[n]
R̃

∗

xx
[n] R

∗

xx
[n]

]

. (11)

Rxx[n] =









Rxx[n−∆, 0] Rxx[n−∆, 1] . . . Rxx[n−∆, N−1]
Rxx[n−∆−1,−1] Rxx[n−∆−1, 0] Rxx[n−∆−1, N−2]

...
. . .

...
Rxx[n−∆−N+1,−N+1] Rxx[n−∆−N+1,−N+2] . . . Rxx[n−∆−N+1, 0]









. (12)

system and restrict ourselves to linear processing but drop the
assumption of stationarity for a quasi-stationary behaviour,
whereby the space-time covariance matrix can be assumed
to be stationary — and therefore only dependent on the lag
parameter τ — for sufficiently short time windows [9].

2.1. MMSE Predictor

We consider the problem of predicting∆ samples ahead while
minimising the mean-squared prediction error (MSE), based
on M spatial measurements in x[n] and a time window con-
taining N past samples for each site, plus the complex con-
jugates of the same. Therefore, the prediction error can be
formulated as

e[n] = x[n]−

N−1
∑

ν=0

(

PH[n, ν]x[n−∆− ν]

+QH[n, ν]x∗[n−∆− ν]
)

(6)

= x[n]−WH
nxn−∆ , (7)

with
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(8)
The matrices P [n, ν],Q[n, ν] ∈ C

M×M describe the pre-
dictor’s reliance on all spatial measurements and their con-
jugates, respectively, taken ν +∆ samples in the past, at time
instance n.

The error covariance matrix derived from (7), Ree[n] =
E{e[n]eH[n]} ∈ CM×M , is obtained by taking expectations
over the ensemble, and in itself may be varying with time n.

Note that in case of stationarity, the dependency of both W n

and Ree[n] on n vanishes. We will carry forward n since
it is well known that the wind signal is non-stationary and
develop an approximately stationary solution in Section 2.2.
Calculating Ree[n] using (7) yields a quadratic expression in
W n, Equation (9).

We assume that x[n] is stationary over at least 2∆ sam-
ples. As a result, R

xx
[n] is Hermitian and therefore posi-

tive semi-definite [10]. This property together with full rank
of R

xx
[n] admits a unique solution to minimises the mean

square error,

W n,opt = argmin
Wn

trace{Ree[n]} . (13)

It can be shown that trace{Ree[n]} is quadratic in W n,
such that the solution to (13) can be found by matrix- and
complex-valued calculus [11]. Finding the minimum re-
quires equating the gradient with respect to the unconjugated
predictor coefficients in W ∗

n to zero. We utilise results
from [11] which show that for constant matrices A and
B the expressions ∂trace{AWH

nB}/(∂W ∗

n) = BA but
∂trace{AWnB}/(∂W ∗

n) = 0 hold. Applying this, and
using the product rule for differentiation of the quadratic term
in (9), yields

∂

∂W ∗

n

trace{Ree[n]} = −R
H
xx[n] +R

xx
[n]W n . (14)

Finally, setting the gradient on the right-hand side of (14)
equal to zero yields the optimum predictor coefficients that
minimise trace{Ree[n]},

W n,opt = R
−1
xx

[n]RH
xx[n] , (15)

which is the well-known Wiener-Hopf solution [12, 13].
If the process x[n] is uncorrelated with its conjugate, i.e.

R̃xx = 0, all the matrices Q[n, ν] = 0 and the prediction
problem reduces to the C-linear case.

2.2. Cyclo-Stationary Covariance Matrix

The cyclo-stationary covariance matrix (and its associated
complementary covariance matrix) is formulated based on



the assumption that windows of data of length L are approx-
imately stationary, and furthermore, that the statistics of that
period are the same during the equivalent window in all years.
The covariance matrix Rxx[n, τ ] is estimated by calculating
the expectation using only data in the quasi-stationary win-
dow centred on n from each year of available training data.
In the estimation of Rxx[n, τ ], we assume cyclo-stationarity,
i.e.Rxx[n, τ ] = Rxx[n−kT, τ ], with k ∈ N and T the funda-
mental period, i.e. 1 year. On the basis of cyclo-stationarity
and data available for K past years, the estimation of the
covariance matrix for time n is performed as

R̂xx[n, τ ] =
1

K(L+1)

K
∑

k=1

L

2
∑

ν=L

2

x[n−kT−ν]xH[n−kT−ν−τ ]

+
2

L

L
2

∑

ν=1

x[n− ν]xH[n− ν − τ ] , (16)

and the complementary covariance matrix is calculated in the
same way but with the Hermitian transpositions replaced by
standard transpositions. The widely linear optimal prediction
filter for time n can then be calculated by replacing the quan-
tities in the Wiener solution (15) by their estimates derived
from (16) inserted into (10)–(12).

3. TESTING AND RESULTS

3.1. Test Data

The proposed approach is tested on wind data provided by the
British Atmospheric Data Centre, which comprises of record-
ings over 6 years — from 00:00h on 1/3/1992 to 23:00h on
28/2/1998 — obtained from 13 sites across the UK. The mea-
surements are taken in open terrain at a height of 10m and
sampled at hourly intervals, comprise hourly averages that are
quantised to a 10◦ angular granularity and integer multiples of
one knot (0.515ms-1) [14].

Widely linear processing is advantageous for improper
signals, or cross-improper in the multichannel case, i.e. if

R̃xx 6= 0. The statistical hypothesis test for the impropri-
ety of complex vectors described in [15] has been applied to
the test data. The test unambiguously rejected the hypothesis

H0 : R̃xx = 0 in favour of H1 : R̃xx 6= 0 indicating that
the data is improper and therefore that widely linear process-
ing is appropriate.

3.2. Cyclo-stationary Estimation

In the estimation of the cyclo-stationary covariance matrix,
(16), K = 5 to make use of all available training data and
the optimal window length L is chosen heuristically to be 15
weeks. The filter length is chosen to be 2N = 6 since the
gains from increasing it further are negligible.

3.3. Results

The widely linear predictor yields improved prediction per-
formance in terms of root mean squared error for all 13 chan-
nels and at all look-ahead times. As one would expect the new
predictor yields greater improvement over its C-linear equiv-
alent at sites with larger complementary correlation and lower
directional variance.

(a) Site 9: Peterhead Harbour (b) Site 12: Tain Range

(c) Site 7: Leuchars (d) Site 10: Rhoose

Fig. 1: Circular histograms of hourly-mean wind direction
measurements at 4 selected sites from the 1 year of data used
for testing.

Results from two channels that showed the least improve-
ment (9 & 12) and the two that showed the most (7 & 10)
are detailed in Table 1. The distribution of the arguments of
these four channels are illustrated by the histograms in Fig-
ure 1. The sites in Figures 12a & 12b show little improvement
and have arguments, or wind directions, spread evenly over a
wide range of angles, whereas the sites in Figures 12c & 12d
demonstrate large improvement and have very narrow distri-
butions, corresponding to low directional variance and high
complementary correlation.

The complementary autocorrelation coefficients for all 13
channels are plotted in Figure 2. The two channels showing
the least improvement over the C-linear predictor are not sim-
ply the two with the smallest complementary autocorrelation
since the improvement is due to both complementary auto-
and cross-correlation.

4. CONCLUSION

In this paper a multichannel widely linear cyclo-stationary
Wiener filter for the prediction of hourly mean wind speed and
direction from 1 to 6 hours ahead has been derived and tested.
The performance of the proposed filter is compared to that of
its C-linear equivalent to quantify the benefits of increasing
computational complexity to accommodate the widely linear
model.

The widely linear model captures information contained
in the complementary auto- and cross-covariance which is in-
accessible in a strictly linear formulation. In addition, the
cyclo-stationary estimation of the covariance matrices cap-
tures the seasonal behaviour of the wind which would oth-
erwise lead to the inclusion of mismatched data in the estima-
tion of the covariance matrices.

The predictors are tested on wind measurements made at



Fig. 2: Scatter plot of complementary auto-correlation coef-
ficients at zero lag for the 13 measurement locations. The
four examples used in Fig. 1 and Table 1 are labelled by site
number.

13 locations distributed geographically around the UK over
a period of 6 years. The widely linear predictor shows im-
proved prediction versus its C-linear equivalent at all 13 lo-
cations. The locations which exhibit greater improvement are
those with the least directional variation and associated high
complementary auto-correlation.
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