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Abstract—This paper proposes a statistical method for 1-6
hour-ahead prediction of hourly mean wind speed and direction
to better forecast the power produced by wind turbines, an
increasingly important component of power system operation.
The wind speed and direction are modelled via the magnitude
and phase of a complex vector containing measurements from
multiple geographic locations. The predictor is derived from the
spatio-temporal covariance which is estimated at regular time
intervals from a subset of the available training data, the wind
direction of which lies within a sliding range of angles centred
on the most recent measurement of wind direction. This is a
generalisation of regime-switching type approaches which train
separate predictors for a few fixed regimes. The new predictor
is tested on the Hydra dataset of wind across the Netherlands
and compared to persistence and a cyclo-stationary Wiener filter,
a state-of-the-art spatial predictor of wind speed and direction.
Results show that the proposed technique is able to predict the
wind vector more accurately than these benchmarks on dataset
containing 4 to 27 sites, with greater accuracy for larger datasets.

I. INTRODUCTION

Accurate short-term forecasts of wind power generation
are essential for the reliable and economic operation of power
systems, and will become increasingly important as the wind
penetration on power systems around the world increases [1]—
[4]. Wind power forecasts are used to inform the management
of conventional plant and storage systems to maintain sys-
tem stability while also reducing imbalance and under/over-
production charges to wind generators making wind more
competitive in the electricity marketplace.

The prediction technique employed depends greatly on the
time scale of the required forecasts, for 6 hours to several days
ahead Numerical Weather Predictors, very large atmospheric
models, are required, but at shorter look-ahead times statistical
methods are preferable [5]. A wide range of short-term fore-
casting techniques have been proposed and are summarised
in [5], [6]. The power output of a wind farm often has a
strong dependence on wind direction due to the arrangement of
wind turbines or local terrain, however, few of these techniques
utilise readily available measurements of direction or attempt
to predict the future wind direction.

Direction has been captured in complex-valued neural
networks, for example in [7]-[9], but these only model individ-
ual spatial locations. Others have developed regime-switching
approaches which predict the wind speed depending on which
direction-based regime the most recent measurements fall into,
for example [10]-[12]. Two bivariate models are described
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in [13] predict speed and direction; the first is regime based and
models the wind speed and direction, while the second models
the perpendicular Cartesian components of the wind speed. All
of these predictors are trained on a continuous series of the
most recent measurements made at multiple locations. Other
regime-switching approaches, such as the Markov-switching
autoregressive model proposed in [14], show that superior fore-
casting performance can be achieved without basing regimes
specific physical quantities.

Furthering other work on complex-valued prediction, re-
ported in [15], this paper aims to extend the regime-switching
type approaches, which commonly contain 2 or 3 fixed regimes
(though the predictor for each regime is commonly adaptive)
specific to the target prediction site. By introducing the concept
of continuous directional regimes, we develop an adaptive
spatial predictor which is optimised at regular intervals for
the current wind conditions at multiple sites on a national
scale based on the wind’s behaviour during periods of similar
conditions in the past.

The data model and approach to spatial prediction are
introduced in Section II and the minimum mean squared error
predictor and proposed continuous directional regime predictor
are derived in Sections II-A and II-B. The testing procedure
and results are presented in Section III and some conclusions
drawn in IV.

II. DATA MODEL AND SPATIAL PREDICTION

At discrete time n, the wind speed and direction at M
locations are embedded as the magnitude and phase of a
complex valued vector z[n] € CM. The spatial covariance
matrix is defined based on the expectation operator, £{-}, as
R,.[n,7] = &{z[n]z"[n — 7]}. Where z'[n] denotes the
Hermitian transpose of x[n] and 7 is a general lag parameter.

It is well known that wind speed and wind direction
are likely non-stationary (has time-varying probability distri-
bution) and otherwise non-linear; both can be volatile and,
direction particularly, can depend heavily on the physical char-
acteristics of the measurement site. Furthermore, the seasonal
and diurnal trends that characterize our human experience of
the wind are themselves variable. In the succeeding text, we
ignore the potential non-linear nature of the system and restrict
ourselves to linear processing but drop the assumption of sta-
tionarity for a quasi-stationary behaviour, whereby the space-
time covariance matrix can be assumed to be stationary—
and therefore only dependent on the lag parameter 7—for
sufficiently short time windows [16].
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A. MMSE Predictor

We consider the problem of predicting A samples ahead
while minimising the mean-squared prediction error (MSE),
based on M spatial measurements in x[n] and a time win-
dow containing N past samples for each site. Therefore, the
prediction error can be formulated as
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The matrices Wn,v] € CM*M describe the predictor’s
reliance on all spatial measurements taken v+ A samples in the
past, at time instance n. Specifically, [Wn, ]|, , addresses
the influence of the measurement at site p onto the prediction at
site ¢. In order to simply use the Hermitian transpose operator
in (2), Wn, v] contains the complex conjugate prediction filter

coefficients.

The error covariance matrix derived from (2), Rc.[n] =
E{elnlet[n]} € CM*M ig obtained by taking expectations
over the ensemble, and in itself may be varying with time
n. Note that in case of stationarity, the dependency of both
W ,, and R..[n] on n vanishes. We will carry forward n since
it is well known that the wind signal is non-stationary and
develop an approximately stationary solution in Section II-B.
Calculating R...[n] using (2) yields a quadratic expression in
W ., Equation (5).

We assume that x[n] is stationary over at least 2A samples.
As a result, Ryx[n] is Hermitian and therefore positive semi-
definite [17]. This property together with full rank of Ryx[n]

admits a unique solution to minimises the mean square error,

W, opt = arg Ivr‘l/in trace{Rec[n]} . ®)

It can be shown that trace{Re.[n|} is quadratic in W,
such that the solution to (8) can be found by matrix-
and complex-valued calculus [18]. Finding the minimum
requires equating the gradient w.r.t. the unconjugated pre-
dictor coefficients in W to zero. We utilise results
from [18] which show that for constant matrices A and
B the expressions dtrace{ AWHBY/(OW?) = BA but
Otrace{ AW ,B}/(OW?.) = 0 hold. Applying this, and using
the product rule for differentiation of the quadratic term in (5),
yields

trace{Rec[n]} = —RE [n] + Rux[n|W,, . (9)

0
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Finally, setting the gradient on the rh.s. of (9) equal to

zero yields the optimum predictor coefficients that minimise
trace{Ree[n]},

Waopt = Rg [n]Ro[1] (10)
which is the well-known Wiener-Hopf solution [19], [20].

B. Continuous Directional Regimes

The time dependent covariance matrix R[n, 7] is esti-
mated by including only historic data for periods when the
wind direction was similar to that of, or in the same direc-
tional regime as, the most recent measurements. A continuous
directional regime refers to the sliding range of angles, 20,
centred on the most recent measurement of wind direction.
The multiple mini-series of N + 1 samples (corresponding to
the concatenation of x[n] and x,,— in (2)) contributing to the
estimation of W, o+ are assumed to be jointly stationary.

Each historic measurement x[i] that is in the same di-
rectional regime of the most recent measurement must be
accompanied by its /N preceding samples which may not lie
within the current regime, therefore we define R;[n,d, 7] =
Rz [n — 0, 7] before proceeding.

The estimation of the spatial covariance matrix can now be
written as

1
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where P[n] is the set of time indexes, p, that satisfy |arg x[p]—
argz[n]) mod (—m,7])| < ©, where argx[i] € (—m, 7] and
arg x[n] denotes the circular mean of arg x[n].

By estimating the spatial covariance for a specific direc-
tional regime, the propagation of changes in wind speed and di-
rectional from upwind to downwind sites can be captured. The
inclusion of mismatched information corresponding to periods
during which the wind direction was significantly different to
the present, which would have the effect of smoothing, or at
least skewing the directional dependence of the predictor, is
avoided.

The regime specific optimal predictor can be recalculated at
each time step or at regular intervals to reduce computational
time at little cost in accuracy.

III. TESTING AND RESULTS

The proposed method will be compared to the cyclo-
stationary Wiener filter (CsWF) [15] and persistence, a com-
mon benchmark for wind prediction. Persistence predicts that
the future wind speed will be the same as the most recent
measurement. Like the direction based approach described in
this paper, the CsWF also make a quasi-stationary assumption
but this time based on the cyclic seasonal behaviour of the
wind; the space-time covariance is estimated using historic data
form the same season as the current prediction.

The cyclo-stationry covariance matrix is estimated as

L
2
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2
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where L is the length of each cyclo-stationary window, K is
the number years of training data being used, and 7" is the
period of the cyclo-stationariry, i.e. 1 year. For the dataset in
question, L = 20 weeks was found to be optimal and K =5
to make use of all available training data.

A. Test Data

The data used for testing is from the Hydra dataset of
hourly mean potential wind at multiple locations across the
Netherlands, shown in Fig. 1. Data from 2001-2005 inclusive
is used as training data and data from 2006 is used for testing.

The measured wind speed has been corrected for the effects
of shelter from buildings or vegetation. The resulting potential
wind is an estimate of the wind speed that could have been
measured at 10m height if the station’s surroundings were free
of obstacles and flat with a roughness length equal to that of
grass onshore (0.03m) and water offshore (0.002m). For more
information on this process see [21].

This transformation aids spatial prediction by removing
biases present at individual measurement locations that would
otherwise interfere with the spatio-temporal correlation of the
data. The procedure is simple to implement once information
regarding the terrain surrounding a weather station is known.
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Fig. 1. Map of the Netherlands showing the location of weather stations and
their reference numbers.

In order to assess the performance of the proposed predictor
on spatial datasets of different sizes, it is tested first on
4 central locations and then on larger datasets with sites
are added progressively beginning with those closest to the
original 4.

B. Results

The range of wind direction in a regime, O, is take to be %’T
since the performance at this range is found by numerical test-
ing to yield better results than % and 7. Given the large range
of wind direction, the improvement in prediction is perhaps
best thought of as due to the exclusion of mismatched data,
rather than the inclusion of well matched data. The number
of historic samples, |P|, that contribute to the estimation of
the covariance matrix for a given regime ranges from 33230
to 37043 depending on sits in the data model and the wind
direction.

The number of past time samples [V is taken to be 3 since
any more significantly increases the computational complexity
for negligible reduction in prediction error. For the same
reason, the covariance matrix is only recalculated every 24
time steps, i.e. once per day.

The performance of the 1-hour-ahead (A = 1) forecast in
terms of root mean squared error (RMSE) for the CDR and
CsWF predictors is plotted in Fig. 2 for data models containing
information from between 4 and 27 sites. The proposed CDR
predictions are consistently more accurate than the CsWEF, but
only by a small margin.

There is a clear reduction in RMSE at all prediction
locations as the amount of spatial information is increased.
Particularly large improvements are seen at specific sites when
new data from nearby locations is added; for example, at site
260 when sites 240, 248 and 256 are added to the data model.
Site 249 also sees marked improvement when a number of
surrounding sites are included in the data model.
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Fig. 2. Root Mean Squared Error (RMSE) for 1-hour-ahead forecast at sites, labelled by station number, for data models containing 4 to 27 sites.

The performance of the directional predictor is compared
to persistence for look-ahead times from 1 to 6 hours in Table
I. The CDR is an improvement on persistence at all look-ahead
times, with approximately twice the reduction in RMSE for the
27 site data model compared to that containing only 4 sites.

IV. CONCLUSIONS

This paper proposes a new spatio-temporal predictor for
hourly mean wind speed and direction at multiple measurement
locations. Inspired by approaches which define fixed, discrete
regimes based on wind direction, an adaptive predictor based
on continuous direction regimes (CDR) is derived and tested,
and shown to produce accurate forecasts for look-ahead times
of 1 to 6 hours.

The CDR is a spatial covariance-based minimum MSE
predictor, it is innovative in its selection of training data in
real time to exclude mismatched historic data based on the
most recent measurements. The spatial covariance matrix is
estimated using only data from periods during which the wind
direction was within a fixed range of its present direction from
which the adaptive predictor is calculated.

The new predictor is tested on the Hydra dataset and
compared to persistence and the cyclo-stationary Wiener filter,
another spatial-covariance-based adaptive predictor. The CDR

Data Model

Location A Persistence 4 Sites 27 Sites
I 1.68 1.59 1.44
2 226 2.10 1.87
. 3 2.69 2.50 222
248: Wijdenes 3.05 2.83 2.54
5 3.36 3.12 2.84
6 3.63 3.36 3.10
I 1.37 1.23 1.09
2 1.73 1.53 1.34
. 3 2.03 1.79 1.58
260: De Bilt 4 228 2.01 1.80
5 2.51 221 2.00
6 2.70 2.37 2.18
I 1.55 1.35 1.23
2 2.05 1.74 1.53
3 2.46 2.09 1.82
273: Marknesse 281 2.39 2.10
5 3.11 2.66 2.37
6 3.37 2.88 2.61
I 1.66 1.43 1.32
2 2.13 1.78 1.61
3 251 2.09 1.88
275: Deelen 4 282 235 214
5 3.10 2.59 2.37
6 3.34 2.80 2.58

TABLE 1. COMPARISON OF CDR ROOT MEAN SQUARED ERROR AT

THE 4 SITES IN THE SMALLEST DATA MODEL TO PERSISTENCE AND WHEN
INCLUDED IN A LARGER DATA MODEL AT LOOK-AHEAD TIMES FROM
A = 1TO 6 HOURS.



is found to produce forecasts which are a significant improve-
ment on persistence and consistently more accurate than the
CsWE, if only by a small margin. Furthermore, it is shown that
the prediction error is reduced as more spatial information is
added to the data model.

While it is relatively crude, the proposed method performs
well and provide encouraging support for the future refinement
of this type of approach, perhaps building in constraints on
wind speed or choosing specific measurement sites to improve
prediction at some target location.
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