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Abstract. Due to the large and increasing penetration of wind power around the world, accurate power production

forecasts are required to manage power systems and wind power plants. In this paper we propose an ensemble of particle

swarm optimised filtering technique for 1-hour-ahead prediction of hourly mean wind speed and direction. The performance

of the new method is assessed by testing it on data from 13 locations around the UK where it performs comparably to linear

techniques but is able to provide significant improvement at a subset of locations.

1. Introduction

Short-term wind power prediction is of great value to energy

traders and power system operators. However, wind power

prediction is notoriously difficult due to the non-stationary and

non-linear nature of wind, and has to rely on solutions that

are sufficiently low in computational complexity in order to

facilitate implementation as real-time solution [1], as opposed

to more complex numerical weather prediction models with

a greater forecast horizon which only update every several

hours [2].

The non-stationarity is strongly linked to the annual cycle of

seasons and as such has been approached in [3,4] by devel-

oping a cyclo-stationary Wiener filter. Linear filters satisfy the

constraint of low complexity [1] but have been found to be par-

ticularly limited by their delayed response to fast changes in

wind regime, which occur due to changing weather patterns.

Therefore, in this submission we aim to investigate a predic-

tion method that lifts the linear constraint in [4]. In particular,

particle swarm optimisation has been applied to FIR filters for

prediction [5]. The adaptive filters exhibit a good response to

sudden changes in wind regime while also tracking the type of

non-stationarities that have been identified for the linear case.

Further more, an ensemble of particle swarm optimised FIR

filters is found to produce the most consistent 1-hour-ahead

prediction.

The wind model and particle swarm optimisation (PSO) algo-

rithm are described in Sections 2. and 3.1, and the application

of PSO to the wind model for prediction is detailed in Sec-

tions 3.2 and 3.3. Results from testing the proposed algorithm

are presented and discussed in Section 4. before some conclu-

sions and suggestions for future work are presented in 5.

2. Wind Model

The hourly mean wind speed and direction at discrete time

index t are modelled as the magnitude and phase of a complex

random variable, y[t], which is the weighted linear combina-

tion of N past measurements of y[t] and some error of unknown

statistics, ε[t]. The past measurements of y[t] and the complex

prediction coefficients, wτ [t], are arranged as vectors yt and

w[t] of size N, respectively,

y[t] =
N

∑
τ=1

wτ [t]y[t − τ]+ ε[t] = w[t]Tyt + ε[t] , (1)

where the coefficients of w[t] form a time dependent FIR filter

of length N, and ·
T denotes the transpose operator.

We choose w[t] to make a prediction, ŷ[t], of y[t] by minimising

the prediction error ε[t]. The prediction problem can now be

written thus:

ŷ[t] = w[t]Tyt , (2)

ε[t] = y[t]− ŷ[t] . (3)

By making assumptions about the statistical properties of ε[t],
one could proceed to formulate a number of linear predictors

for y[t], however, it is our goal to proceed without making such

assumptions.

3. Prediction Based on Particle Swarm Optimisation

3.1 Review of Particle Swarm Optimisation

The particle swarm optimisation (PSO) algorithm [5,6], is a

powerful and intuitive tool inspired by the social behaviour of

swarms in nature. A group of candidate solutions, or particles,

are flown through a given problem space with their velocities

influenced by both their own performance, evaluated by some
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Parameter Value

c0 1.5

c1 0.5

c2 0.5

vmax 0.05

No. of Particles 25

Memory 48

Ensemble Size 20

Table 1. List of parameter values used in PSO algorithm.

cost function, and that of the most successful member of the

swarm.

Particle accelerations are randomly perturbed to produce the

swarm-like behaviour observed in nature and to allow for the

problem space to be appropriately explored. The swarm is

accelerated towards the best known minima of the cost func-

tion while continuously searching for a better solution.

Algorithm: The ith particle occupies the position pi(t) at time t

in a problem space governed by cost function C(p), has veloc-

ity vi, memory of its own previous best position, pi,best , and

knowledge of the previous best position of any particle pg,best .

1. Initialise particles with random positions and velocities in

the problem space for time step t = 0. Assign pi,best =
pi(0) for all particles and set pg,best = argmin

pi,best

(

C(pi,best)
)

.

Repeat:

2. For each particle, calculate C(pi(t)). If C(pi(t))<C(pi,best)
then pi,best = pi(t). If C(pi(t)) < C(pg,best) then pg,best =
pi(t).

3. Update velocity, vi(t), and position of each particle:

vi(t + 1) = c0vi(t)+ r1c1(pi,best − pi(t))

+ r2c2(pg,best − pi(t)) ,

pi(t + 1) = pi(t)+ vi(t + 1) ,

where r1,r2 ∼U(0,1) are random weights, c0 is the iner-

tial weight, c1 is the cognition acceleration, and c2 is the

social acceleration.

4. Advance one time step and return to step 2.

3.2 PSO for FIR Prediction

The algorithm described in Section 3.1 is applied as if in real

time to the FIR predictor described by (2). Each particle in the

swarm is a candidate for the FIR filter and at each time step the

best performing particle is selected to make the next predic-

tion. The problem space is therefore the N-dimensional com-

plex space CN . Each particle, pi(t), and its associated velocity,

vi(t), is a complex vector of length N.

The cost function to be minimised is the prediction error, ε[t].
When a new measurement is received, the potential past per-

formance of all the particles can be evaluated and the best per-

forming particle selected to make the next prediction.

In addition to the basic algorithm, a maximum particle speed,

vmax, is enforced to restrict the step size of particles in order

to control the resolution of the optimization, akin to [7,8]. If a

particle’s speed exceeds vmax, it is reduced to vmax.

Since the wind signal is non-stationary, the optimal solution

we are searching for is not static in the problem space a priori

the PSO must be adjusted to allow for out-of-date solutions to

be forgotten. Therefore, the particles are given a finite memory

of the previous best locations pi,best and pg,best .

Finally, due to the stochastic nature of the PSO algorithm,

the most consistent prediction is produced by generating an

ensemble of FIR filters, each individual filter optimised by a

separate particle swam, and taking the mean prediction to be

the ensemble prediction. Therefore, we formulate an ensemble

of particle swarm optimised FIR (EPSO-FIR) filters.

The kth member of the ensemble comprising K members

optimises wk[t] to produce the prediction ŷk[t], as in (2). The

ensemble prediction, ỹ[t],

ỹ[t] =
1

K

K

∑
k=1

ŷk[t] , (4)

is the mean of the individual members’ predictions.

3.3 Parameter Choice

The parameters of the PSO have been chosen heuristically,

after exhaustive tests, to produce appropriate swarm behaviour

and to minimise the root mean-squared error over the predic-

tion period. Table 1 details the parameter values.

The coefficients of the velocity equation are chosen to produce

swarm-like behaviour to enable the PSO algorithm to function

as intended. This requires a balance between cognition and

social acceleration to maintain a healthy particle distribution,

and a sufficiently large inertial weight to ensure that the prob-

lem space is adequately explored. The maximum velocity is

chosen to limit the distance each particle can travel in a single

time step.

Each particle is given a memory of 48 time steps, i.e. 48 hours,

since this is the time scale that the weather systems which gov-

ern the wind regime move across the UK, and is therefore an

important component scale related to the wind signal’s non-

stationarity. An ensemble of 20 particle swarm optimised fil-

ters is found to produce consistent performance with little to

be gained from using a larger ensemble.

4. Results

In this section we apply the proposed method to wind measure-

ments and attempt to make 1-hour-ahead forecasts. The per-

formance of the ensemble of particle swarm optimised FIR fil-

ters (EPSO-FIR) is compared to the complex LMS algorithm

(CLMS), [3,9], and a single channel cyclo-stationary Wiener

filter (CsWF) described in [4].
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Figure 1. Locations of the 13 meteorological stations from which measure-

ments have been used. Numbering corresponds to Table 3.

All quoted errors are root mean-squared error (RMSE),

RMSE =

√

1

T

T

∑
t=1

ε[t]ε[t]∗ , (5)

where the prediction error ε[t] is the difference between the

predicted and measured wind velocity, i.e. not wind speed or

direction independently.

4.1 Description of Data

The proposed approach is tested on wind data provided by the

British Atmospheric Data Centre, which comprises of mea-

surements made over 1 year — from 00:00h on 1/3/1997 to

23:00h on 28/2/1998 — obtained from 13 sites across the UK

detailed in Figure 1. The measurements are taken in open ter-

rain at a height of 10m, and comprises hourly averages that are

quantised to a 10◦ angular granularity and integer multiples of

one knot (0.515ms−1) [10].

4.2 Prediction

Some example time series from individual and ensemble pre-

dictions are illustrated in Figure 2. The individual filters are

able to track large and fast changes in the wind speed well but

do not do so consistently. This tracking is often accompanied

by a significant over-shoot as the filter fails to anticipate the

sudden change in gradient.

The inconsistent behaviour of the individual filters is lost when

an ensemble of predictions is averaged, resulting in an over

Site
Individual Ensemble

PSO-FIR PSO-FIR

Boulmer 2.0568–2.8172 1.6347

Cheivenor 1.7105–2.3543 1.3361

Langdon Bay 1.9056–2.4388 1.6326

Peterhead Harbour 2.1990–2.9896 1.8113

Roose 1.8201–2.1254 1.5887

Table 2. Comparison of the root mean-squared errors (RMSE) from individ-

ual predictors and the RMSE from the corresponding ensemble prediction.

# Site CLMS CsWF EPSO-FIR

1 Boulmer 1.6252 1.6238 1.6347

2 Chivenor 1.7812 1.7790 1.3361

3 Coningsby 1.2939 1.2932 1.3231

4 Gorleston 1.6071 1.6090 1.6462

5 Hawarden Airport 1.5984 1.5948 1.6401

6 Langdon Bay 1.7399 1.7423 1.6326

7 Leuchars 1.5783 1.5717 1.6026

8 Machrihanish 2.0591 2.0532 2.0945

9 Peterhead Harbour 1.7801 n/a∗ 1.8113

10 Rhoose 1.7596 1.7578 1.5887

11 Shawbury 1.5326 1.5314 1.5701

12 Tain Range 2.0262 2.0224 2.1034

13 West Freugh 1.8260 1.8289 1.8626

Table 3. Comparison of 1 hour ahead root mean-squared prediction error for

the complex LMS (CLMS) algorithm, cyclo-stationary Wiener filter (CsWF)

and the ensemble of particle swarm optimised FIR filters (EPSO-FIR). The

RMSE for the best performing method is highlighted in bold.
∗ Implementation of the CsWF was not possible for Peterhead Harbour due to

insufficient training data.

all reduction in error but a systematic lag in response to large

changes in wind speed.

The benefit of taking the mean prediction from an ensemble of

PSO optimised predictors is significant. The RMSE, measured

over the entire year of predictions, for the ensemble prediction

is substantially lower than that for the individual predictors.

Some examples are given in Table 2.

The results from the EPSO-FIR prediction and the two linear

methods are listed in Table 3. The EPSO-FIR is out performed

by the other two methods at 10 of the 13 locations by approxi-

mately 4%, however, it performs substantially better than both

the CLMS and CsWF at three sites with a 15% reduction in

RMSE, notably the three most southerly sites in the data set,

see Figure 1.

The results provide evidence that PSO can afford a significant

performance advantage for at least some sites in the current set-

ting of the method. Whether there are any anomalies in those

three sites that favour PSO over our previous techniques is dif-

ficult to established based on only three sites, and will be the

subject of future investigation.

The behaviour of the particle swarm is good, the distribution

of particles is such that a sensible region of the problem space

is explored. The algorithm converges quickly and tracks the

non-stationary wind signal well. The density evolution of the
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24 36 48 60 72 84 96
0

2

4

6

8

10

12

14

Time index t / [h]

W
in
d
S
p
ee
d
|y
[t
]|
/
[m

s
−
1
]

 

 
Wind Speed, |y[t]|
PSO-FIR, |ŷ[t]|
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(c) Chivenor
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(d) Rhoose

Figure 2. Wind speed, individual PSO-FIR prediction and ensemble prediction (EPSO-FIR) for (a,c) Chivenor and (b,d) Rhoose. (a) and (b) show

31/05/97-09/06/97, while (c) and (d) show 01/06/97-03/06/97.

real part of the first element of the PSO particles is shown in

Figure 3. Also of note is that the EPSO-FIR requires very little

training data, approximately 2N samples to populate the filter

and converge, compared to the CLMS which, depending on

choice of learning rate and training strategy requires several

months of data, and the CsWF which needs several years worth

of training data in order to capture the seasonal trends in the

wind data.

5. Conclusions and Future Work

The ensemble particle swarm optimised FIR predictor pro-

posed offers similar performance to linear techniques of higher

complexity, which require substantially more training data,

and still has great potential for further development. The PSO

algorithm is found to be efficient and converge quickly, track-

ing the non-stationary wind signal well.

The potential for tracking large changes in wind speed is of

great interest since this is a weakness of the simple linear and

many substantially more complex techniques which are cur-

rently employed for short-term wind prediction.

The performance of this early-development approach are

encouraging and the method warrants further investigation.

Both the complex LMS and cyclo-stationary Wiener filter saw

significant improvement when expanded to process informa-

tion from multiple sites simultaneously, taking advantage of

the spatial correlation between different locations, [3,4]. We

expect to see similar results for the ensemble particle swarm

optimised FIR filter approach. The EPSO-FIR will also be

extended to forecast more than 1 time step ahead.

Other authors have had success combining PSO with multi-

scale analysis such as wavelet decomposition and other tech-

niques, [11,12]. These should be investigated along with other

appropriate PSO variations [6,7,13].
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Figure 3. An example of the density evolution of the real part of the first element of the particles in a swarm for the first 1000 time steps of prediction.
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