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ABSTRACT

This paper develops a linear predictor for application to wind

speed and direction forecasting in time and across different

sites. The wind speed and direction are modelled via the mag-

nitude and phase of a complex-valued time-series. A multi-

channel adaptive filter is set to predict this signal, based on

its past values and the spatio-temporal correlation between

wind signals measured at numerous geographical locations.

The time-varying nature of the underlying system and the an-

nual cycle of seasons motivates the development of a cyclo-

stationary Wiener filter, which is tested on hourly mean wind

speed and direction data from 13 weather stations across the

UK, and shown to provide an improvement over both station-

ary Wiener filtering and a recent auto-regressive approach.

Index Terms— Multichannel adaptive filtering; adaptive

prediction; cyclo-stationary Wiener filter.

1. INTRODUCTION

There are numerous decision making problems which rely on

short-term wind forecasts such as sailing, ship routing, air

traffic control, etc. Wind forecasts are also used to produce

predictions of wind farm power output, which are of signif-

icant value to power system operators, electricity generators

and energy traders for look ahead times of up to 48 hours [1].

For forecast horizons of 6 to 72 hours numerical weather pre-

diction (NWP) models are employed and achieve a significant

improvement on persistence, the standard against which this

type of forecast is measured [2,3]. However, since NWPs are

typically only run every 6 hours due to their computational

expense, simpler techniques are used to produce short-term

forecasts [4].

For the prediction of wind speed alone, a number of

linear [5–7] and non-linear approaches [8–11] have been
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suggested that exploit the spatial correlation between geo-

graphically separated measurements. While the underlying

system is generally considered non-linear, linear approaches

have been justified by their reduced complexity and relatively

straightforward operation. However, the omission of wind di-

rection and the subsequent reliance on only speed is claimed

to introduce a systematic error into forecasting [8].

Wind direction has been incorporated as a phase into

complex-valued data models [21], with prediction performed

e.g. by neural networks, such as in [12–16]. These ap-

proaches are non-linear and their inherent complexity makes

them difficult to expand to a multichannel arrangement to

capture spatial correlation. The idea of modelling wind

speed and direction by complex-valued time series has been

extended even to quaternion-based / hypercomplex tech-

niques [17–19]. These three or four-dimensional methods

have been constructed to predict single-channel three dimen-

sional wind vectors, which however exceed the requirements

of most applications of wind forecasting. Auto-regressive

models to predict the wind vector have been developed but

rely on NWP results as inputs [20]. All of these approaches

are single-channel, i.e. only attempt to forecast at a single site

and ignore spatial correlation, likely due to prohibitive cost

and/or numerical difficulties of the multichannel case.

Therefore, this paper attempts to combine prediction of

wind speed and direction by means of a complex-valued

wind-data model with the exploitation of spatial correlation

of measurements at different geographical sites. Driven, akin

to [6], by a desire to keep the computational model simple

and inexpensive, the analysis is restricted to a linear multi-

channel prediction approach. This results in the formulation

of a cyclo-stationary Wiener filter to exploit the nature of the

wind data.

This paper is organised as follows. In Sec. 2, the data

and its statistical properties are reviewed, leading to the for-

mulation of an optimum cyclo-stationary Wiener filter in

Sec. 3. Sec. 4 demonstrates the advantages of assuming

cyclo-stationarity, justifies the parameter setting of the cyclo-

stationary Wiener predictor, and demonstrates and compares

simulations and test results. Conclusions are drawn in Sec. 5.



2. DATA MODEL AND COVARIANCE MATRIX

Wind speed and direction across M geographically separate

sites are embedded in a vector-valued complex time series

x[n] ∈ C
M , where the speed and direction of the wind form

the magnitude and phase of the complex samples, and n is

the discrete time index. Based on the expectation operator

E{·}, we define the space-time covariance matrix Rxx[n, n−
τ ] = E{x[n]x∗[n − τ ]}, which contains auto-correlation se-

quences of the M wind signals on its main diagonal, and the

cross-correlation sequences between different site measure-

ments on the off-diagonals. In the case of wide-sense sta-

tionary data, the space-time covariance matrix will only de-

pend on the lag parameter τ and takes on the Hermitian form

Rxx[τ ] = R
H
xx[−τ ], where {·}H indicates Hermitian trans-

pose.

Akin to [6,8], for the sake of a somewhat simplified model

we neglect non-linear effects. However, we assume a quasi-

stationary model, where — for sufficiently short time win-

dows — the space-time covariance matrix can be assumed to

be stationary, and therefore only depends on the lag parame-

ter τ . However, taking seasonal patterns into account, we will

detail a cyclo-stationary model later in Sec. 3.2.

3. COMPLEX MULTI-CHANNEL PREDICTION

The above data model motivates a quasi-stationary linear pre-

dictor outlined in Sec. 3.1, with the estimation of required

statistics based on cyclo-stationarity in Sec. 3.2.

3.1. Optimal MSE Predictor

We consider the problem of predicting ∆ samples ahead,

based on M spatial measurements in x[n] and a time win-

dow containing N past samples for each site. Therefore, the

prediction error can be formulated as

en = x[n]−

N−1
∑

ν=0

W
H[n, ν]x[n−∆−ν] = x[n]−W

H
nxn−∆

(1)

with

Wn =











W[n, 0]
W[n, 1]

...

W[n,N − 1]











, xn =











x[n]
x[n− 1]

...

x[n−N + 1]











.

The matrices W[n, ν] ∈ CM×M describe the predictor’s re-

liance on all spatial measurements taken ν+∆ samples in the

past, at time instance n. Specifically, [W[n, ν]]m,µ addresses

the influence of the measurement at site m onto the prediction

at the µth location. In order to simply use the Hermitian trans-

pose operator in (1), W[n, ν] contains the complex conjugate

prediction filter coefficients.

The error covariance matrix derived from (1), Ree[n] =
E{ene

H
n} ∈ CM×M , is obtained by taking expectations over

the ensemble, and in itself may be varying with time n. Note

that in case of stationarity, the dependency of both Wn and

Ree[n] on n vanishes.

Assume that x[n] is stationary over at least 2∆ samples,

Rxx[n] is Hermitian and therefore positive semi-definite, and,

together with full rank of Rxx[n], admits a unique solution

that minimises the quadratic problem

Wn,opt = argmin
Wn

trace{Ree[n]} . (2)

The solution can be found by equating the gradient w.r.t. the

unconjugated predictor coefficients in W
∗

n to zero. Using

matrix-valued calculus summarised in e.g. [23], for constant

matrices A and B, ∂trace{AWH
nB}/(∂W∗

n) = BA but

∂trace{AWnB}/(∂W∗

n) = 0 hold for Wirtinger’s complex

differentiation. Applying this, and using the product rule for

differentiation of the quadratic term in (7), yields

∂

∂W∗

n

trace{Ree[n]} = −R
H
xx[n] +Rxx[n]Wn,opt

!
= 0

−→ Wn,opt = R
−1
xx

[n]RH
xx[n] , (3)

which is the well-known Wiener-Hopf solution. The time de-

pendence leads to a Wiener solution that will rely on local

stationarity, akin to recent results presented in [22].

3.2. Cyclo-Stationary Solution

In the estimation of Rxx[n, τ ] as required for (3) with (8) and

(9), we assume both quasi-stationarity, i.e. over a window of

L samples the signal x[n] is wide sense stationary, and cyclo-

stationarity, i.e. Rxx[n, τ ] = Rxx[n−kT, τ ], with k ∈ N and

T the fundamental period. To capture the annual seasonal pat-

terns, here T is selected as one year. It is noted that L < T
must be satisfied as part of the cyclo-stationary assumption.

The estimation of R̂xx[n, τ ] for the stationary case is recov-

ered when L = T .

On the basis of cyclo-stationarity and data available for K
past years, the estimation of the covariance matrix for time n
is performed as

R̂xx[n, τ ] =
1

KL

K
∑

k=1

L

2
∑

ν=1−L

2

x[n−kT−ν]xH[n−kT−ν−τ ]

+
2

L

L

2
∑

ν=1

x[n−ν]xH[n−ν−τ ] . (4)

The optimal predictor for time n can be then be calculated as

W n,opt = R̂
−1
xx [n]R̂

H
xx[n] , (5)

with the estimated r.h.s. quantities defined analogously to (8)

and (9) based on (4). In determining the window length L,

a trade-off is made between consistency of the estimation and

the error caused using outdated statistics.



Ree[n] = E
{

(x[n]−W
H

n xn−∆)(x
H[n]− x

H

n−∆Wn)
}

= Rxx[n, 0]− E{x[n]xH

n−∆}Wn −W
H
nE{xn−∆x

H[n]}+W
H
nE{xn−∆x

H

n−∆}Wn

= Rxx[n, 0]−Rxx[n]Wn −W
H
nR

H
xx[n] +W

H
nRxx[n]Wn (7)

Rxx[n] =











Rxx[n,∆]
Rxx[n,∆−1]

...

Rxx[n,∆−N+1]











(8)

Rxx[n] =











Rxx[n−∆, 0] Rxx[n−∆, 1] . . . Rxx[n−∆, N−1]
Rxx[n−∆−1,−1] Rxx[n−∆−1, 0] Rxx[n−∆−1, N−2]

...
. . .

...

Rxx[n−∆−N+1,−N+1] Rxx[n−∆−N+1,−N+2] . . . Rxx[n−∆−N+1, 0]











(9)

4. SIMULATIONS AND RESULTS

Based on test data characterised in Sec. 4.1, Sec. 4.2 justi-

fied the parameter selection for the proposed method, which

is then tested and compared to a benchmark algorithm in

Sec. 4.3.

4.1. Test Data

The proposed approach is tested on wind data provided

by the British Atmospheric Data Centre, which comprises of

recordings over 6 years — from 00:00h on 1/3/1992 to 23:00h

on 28/2/1998 — obtained from 13 sites across the UK as de-

tailed in Fig. 1. The data taken in open terrain at a hight of

10m [24], and is sampled at hourly intervals, providing hourly

averages that are quantised to a 10◦ angular granularity and

integer multiples of one knot (0.515ms−1).

Although the sites and time window were chosen to have

a near-continuous record, the problem of missing data points

had to be addressed. Firstly, for the estimation of the covari-

ance matrices, missing data points were zero-padded, and the

normalisation in calculating correlation coefficients was ad-

justed accordingly to provide unbiased estimates. Secondly

for the prediction filtering, any errors and their resulting tran-

sients were discarded from the prediction output when assess-

ing performance.

4.2. Estimation of Cyclo-Stationary Statistics

Quasi-Stationarity. To investigate the assumption of quasi-

stationarity, the total squared error,
∑

n e
H
nen, is compared

for different window lengths L at look-ahead intervals ∆ =
1 . . . 6, as depicted in Fig. 2. The total MSE is normalised

w.r.t. a maximum window length L equivalent to one year,

where all data is used to calculate a stationary estimate. From
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Fig. 1. Geographical distribution of 13 Met. Office stations

supplying the test data.

Fig. 2, it is evident that the optimum window length L is ap-

proximately 15 weeks, which provides the best trade-off be-

tween inconsistent estimation and the use of outdated inputs.

It is noted that individual errors for the 13 sites in Fig. 1 fluc-

tuate and that quasi-stationarity across locations varies due to

differing local geography, which will also manifest itself in

the quality of prediction of wind speed and direction at indi-

vidual sites later.

Cyclo-Stationarity. To underline the validity of cyclo-

stationarity, Fig. 3 compares the total squared error of the

Wiener solution under stationary, quasi-stationary, and cyclo-

stationary assumptions against the error in persistence [2],

ep[n] = x[n − ∆] − x[n], which takes the current sample
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window length L in terms of total MSE normalised w.r.t. sta-
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Fig. 3. Mean improvement over persistence across all 13

sites for the cyclo-stationary, quasi-stationary and stationary

Wiener filter.

x[n] as an estimate for a look-ahead, i.e. expecting no change

in wind speed or direction over the next ∆ samples. The root

mean square (RMS) error improvement E shown in Fig. 3 is

therefore defined as

E = 1−

( ∑

n e
H[n]e[n]

∑

n e
H
p [n]ep[n]

)

1

2

. (6)

The relative improvement over persistence E in Fig. 3 de-

pends on the look-ahead ∆ = 1 . . . 6. The largest improve-

ments are seen at greater look-ahead times where the perfor-

mance of the persistence method worsens. The relatively poor

performance of the quasi-stationary filter illustrates the need

for multiple years of training data to smooth the filter coef-

ficients and counter the likely effect of inconsistent estima-

tion. In contrast, the cyclo-stationary solution with an esti-

mate based on a window L of 15 weeks outperforms the two

other models.

While the notation in (5) suggests to re-calculate the

Wiener filter coefficients at every step in time, for the sake

of computational complexity, the coefficient set was only up-

dated once a day, which is sufficiently short compared to the

much longer data window L and incurred no penalty in terms

of performance.
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Fig. 4. Improvement over persistence by cyclo-stationary

Wiener filter and VAR [7] for (a) Boulmer, (b) Coningsby,

(c) Leuchars, and (d) Shawbury; the absolute error refers to

el[n], while the magnitude error es,l[n] directly compares to

the error in VAR.

4.3. Prediction Results

To compare the proposed approach, it is noted that for spatial

multi-channel predictions to date only wind speed is consid-

ered. Compared to the prediction error el[n] of the predicted

estimate x̂l[n] at a site l, i.e. the lth component in (1), an error

for the speed-only component can be defined as

es,l[n] = |xl[n]| − |x̂l[n]| . (7)

However, note that due to Schwarz’ inequality, |es,l[n]| ≤
|el[n]|, such a comparison is difficult.

In Fig. 4, the proposed approach is compared to a vec-

tor auto-regressive (VAR) method [7], a linear multichannel

prediction approach for wind speed with a computational

complexity that is comparable to the Wiener flter. The VAR

method tackles non-stationarity through a detrending proce-

dure applied to the wind speed time series on a site-by-site

basis. For the error improvement over persistence, we see that

the speed part of the Wiener filter’s prediction is comparable

to VAR though the performance of both approaches varies

across the 4 depicted sites. The directional Wiener filter out-

performs both other methods w.r.t. E, since the accuracy of

persistence suffers significantly when direction is considered.

The accuracy of the speed part of the prediction is almost

identical to that of the VAR method applied to data from the

same sites in [7], but here valuable directional information is

provided as part of the forecast.



5. CONCLUSIONS

For the prediction of both wind speed and direction, modelled

as a complex-valued time series, we have proposed a mul-

tichannel Wiener filter whose coefficients depend on statis-

tics that have been approximated as cyclo-stationary. This

assumption has been justified in simulations, where perfor-

mance exceeds that of stationary and quasi-stationary solu-

tions. In the prediction of wind data from 13 UK sites, we

have demonstrated that the wind speed prediction can match

a benchmark state-of-the-art algorithm, but additionally pro-

vide a valuable directional forecast.
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