

Contents

A brief history of wind power forecasting

Challenges, advances, and opportunities

The future of energy forecasting

Thanks to my many collaborators!

Links and references at the end...

A brief history of wind power forecasting

1980s

- First wind farms followed by the first research on wind power forecasting
- Predictive control for wind turbines

1990s

- Small island systems have immediate need for forecasting
- Combination of weather forecasts and wind farm models pioneered in Denmark

2000s

- Ensemble weather forecasting
- First wind and solar power forecasting start-ups

2010s

- R&D consolidation though ANEMOS.plus, WFIP, Smart4RES...
- Maturing and consolidation of commercial energy forecasting services

Challenges, advances, and opportunities

Machine learning and Al

Machine Learning and Al

Improvements in **forecast skill** have come from:

- 1. New sources of predictability (and access to data)
- 2. ML, particularly tree methods and physics-informed implementation

- 1. Making use of uncertainty quantification
- 2. Decision-support and automation
- 3. Closer collaboration between forecasters and forecast users

Improvements in forecast skill

Improvements in forecast skill

Improvements in forecast skill

Improvement in forecast value

Example: Reserve procurement

Reserve Volume Avoided

Additional Reserve Volume

25

30

35

Lead-time [h]

40

With a reserve cost of £50/MWh, this represents a saving of approximately £75m per year!

Control REACT

NIA project with

national**gridESO**

Net-load [standardised]

Most of the time,
less reserve can be
held than the
benchmark

Result: overall reduction in reserve cost and improved risk profile

The future of energy forecasting

Machine Learning and Al

Data-driven weather forecasts

- Huawei, NVIDIA, DeepMind
- Super-fast!
- Competitive performance

Huawei's Pangu-Weather performing very well!

Figure 1 from Ben-Bouallegxue *et al* "The rise of data-driven weather forecasting", 2023, arXiv:2307.10128

Forecast skill (the larger the better) over the Northern Hemisphere at day+2 and day+6. Skill is measured as the correlation between the forecasts and the verifying analysis (operational IFS) for the geopotential height at 500hPa.

What do we want to predict anyway?

- **Energy:** Blocks of energy for trading and generator scheduling, risk/reserve requirements
- Power: ramps for balancing; instantaneous power for ancillary services, reactive power
- Interdependency with markets: risk management, algorithmic trading, embedded flexibility
- Network flows/constraints: probability of constraint, regional balancing, TSO/DSO flow

The future of energy forecasting?

- Sharing observations, forecasts, and models
- Incentivised though performance gain and financial remuneration
- Privacy-preserving to protect commercial interests and personal data

References and links

- Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015). https://doi.org/10.1038/nature14956
- C. Sweeney, R.J. Bessa, J. Browell and P. Pinson, "The Future of Forecasting for Renewable Energy," WIREs Energy and Environment, vol. 9, no. 2, 2020, https://doi.org/10.1002/wene.365
- ANEMOS.plus, "Towards the definition of a standardised evaluation protocol for probabilistic wind power forecasts", 2011 http://www.anemos-plus-project.eu/
- C. Gilbert, J. Browell and D. McMillan, "Leveraging Turbine-level Data for Improved Probabilistic Wind Power Forecasting," IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1152-1160, 2020, https://doi.org/10.1109/TSTE.2019.2920085
- J.R. Andrade; R.J. Bessa, "Improving Renewable Energy Forecasting With a Grid of Numerical Weather Predictions", IEEE Transactions on Sustainable Energy, vol. 8, no. 4, 1571-1580, 2017, https://doi.org/10.1109/TSTE.2017.2694340
- Z. Ben-Bouallegxue et al "The rise of data-driven weather forecasting", 2023, arXiv:2307.10128
- Al Weather Forecasting at ECMWF: https://www.ecmwf.int/en/forecasts/dataset/machine-learning-model-data
- Smart4RES Horizon Project 2019-2023: https://www.smart4res.eu/

