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* A brief history of wind power forecasting
« Challenges, advances, and opportunities
* The future of energy forecasting

Thanks to my many collaborators!

Links and references at the end...
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A brief history of wind
power forecasting
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1980s

* First wind farms followed by the
first research on wind power
forecasting

* Predictive control for wind turbines

1990s

« Small island systems have
Immediate need for forecasting

- Combination of weather forecasts
and wind farm models pioneered in
Denmark

pLIN2g dyd-xapul/m/310°eIpawi|IM suowwod//:sd1y
‘0°€ A9 DD ‘elpadpyipn yst8u3 1e youostadyaadialseo) Ag

LYLEEEL



aa University

7 of Glasgow

2000s
 Ensemble weather forecasting

- First wind and solar power il condion
forecasting start-ups uncertainty

2010s

* R&D consolidation though Analysis
ANEMOS.pIus, WFIP,
Smart4RES..

« Maturing and consolldatlon of

orecas /
commercial energy forecasting ncertainty

services

Figure source: Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical
weather prediction. Nature 525, 47-55 (2015). https://doi.org/10.1038/nature14956
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Challenges, advances,
and opportunities
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Deep Learning Based Densely Connected Network
for Load Forecasting

Zhuoling Li, Yuanzheng Li
Renzhi Lu

Absiraci—Load forecasting is of crucial importance for opera-
tions of electric power systems. In recent years, deep learning based
methods are emerging for load forecasting becanse their strong
nonlinear approximation capabilities can provide more forecast-

. Member, IEEE, Yun Liu
. Member, IEEE, and Hoay Beng Gool

. Member, IEEE, Ping Wang, Senior Member, IEEE,
. Senior Member, IEEE

I. INTRODUCTION

OAD forecasting plays an important role in various power
system decision making problems. such as unit commit-
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Improvements in forecast skill have
come from:

1. New sources of predictability
(and access to data)

2. ML, particularly tree methods and
physics-informed implementation

Improvements in forecast value
have come from:

1. Making use of uncertainty
ALK quantification

2. Decision-support and automation

3. Closer collaboration between
forecasters and forecast users
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4D Grid of Weather
Predictions

“Site Specific” Weather
Forecast

Simple weather-to-power
relationship

Export Meter

’______‘
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Proposed by Andrade & Bessa (2017), doi:10.1109/TSTE.2017.2694340
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Proposed by Gilbert, Browell & McMillan (2019), doi:10.1109/TSTE.2019.2920085



ARLEcnaal |Improvement in forecast value
* of Glasgow Example: Reserve procurement

Sometimes (~25%) reserve

than benchmark needed to satisfy
risk appetite

c¢GPD 99.9% Prediction Inverval

With a reserve cost of = Reserve Volume Avoided
£50/MWh. this represents ® Additional Reserve Volume
a saving of approximately
£75m per year!

Control REACT
NIA project with
nationalgrid

O tnei

Most of the time,
reserve can be
held than the
benchmark

Net-load [standardised]

Result: overall reduction in
. reserve cost and improved

25 30 35 40 risk profile
Lead-time [h]
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The future of energy
forecasting
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S MSLP and 850hPa wind speed
=2y Tue 10 Oct 2023 18 UTC (T+114)
https://charts.ecmwf.int/
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Data-driven weather forecasts
Forecast skill (the larger the better) over the Northern Hemisphere at day+2 and day+6. Skill is

° H uawe| : NVI D IA, DeepM | nd measured as the correlation between the forecasts and the verifying analysis (operational IFS) for

the geopotential height at 500hPa.
« Super-fast!

« Competitive performance

Day2 | | | | geses®*%es

— PGW
— |FS
— ERAS

anomaly correlation

Huawei’s Pangu-Weather

performing very well!

Figure 1 from Ben-Bouallegxue et al
“The rise of data-driven weather
forecasting”, 2023, arXiv:2307.10128

anomaly correlation
-1 r
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Forecasts presented
to decision maker *
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Events: Timing

and severity

Complex
Interactions

Compound
Variables

Forecast integrated

within Decision
Support

A \What do we want to predict anyway?

Energy: Blocks of energy for trading and
generator scheduling, risk/reserve requirements

Power: ramps for balancing; instantaneous
power for ancillary services, reactive power

Interdependency with markets: risk
management, algorithmic trading, embedded
flexibility

Network flows/constraints: probability of
constraint, regional balancing, TSO/DSO flow
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Information Data ;
Consumer Expert User Pragmatist Futurist
Natlonal National
' - Weather
Service
i >
v
!
v
Forecast
Supplier * Sharing observations, forecasts, and
) models
¥ * Incentivised though performance gain
Data Ik/larket and financial remuneration
* Privacy-preserving to protect
commercial interests and personal

Figure source: Sweeney, Browell et al (2020)
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