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1. Uncertainty Forecasting

What is it and why should I care?

Decarbonisation

Variable with Limited PredictabilityHighly Controllable

1. When uncertainty is small, deterministic operation is OK

• Probability distributions well approximated by delta functions

• Most risks are “low probability, high impact” and treated 

separately (e.g. generator trip, component failure)

2. When uncertainty is significant, it pays to know what the range of 

possible futures includes…

• …and how probable they really are.

• Many risks of varying severity (much more complex!)



1. Uncertainty Forecasting

What is it and why should I care?

Penetration Danish Experience

>5% Basic forecasts are important

>10% Reliable probabilistic forecasts are needed

>15% Energy system integration

>20% Demand side management

>25% New methods for operating reserves are needed
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Wind Penetration in Denmark

15%
20%

30%

Penetration†:
10%

5%

†Proportion of electricity generated, source EC.

Source: Henrik Madsen.



1. Uncertainty Forecasting

Forecasting in the Energy Sector

Very-short-term Short-term Medium-Term Long-term

Timescale
Minutes to

Hours
Hours to Days

Weeks to 

Seasons
Years

Applications/

Users

Balancing/TSO

Markets/Traders

Markets/Traders

Operational 

Planning/TSO

O&M/Operators

O&M/Operators

Markets/Traders

Planning/TSO

Planning/ 

Developers, 

TSOs, Policy 

Makers

Methodology

Statistical methods, 

time series analysis, 

variations on AR

Post-processed Numerical 

Weather Prediction

Climate 

Modeling

State-of-the-

art/Research 

Challenges

Large spatial scale 

(1000s sites), 

weather regimes,

dynamic models

Improving NWP, statistical learning

for post-processing, high-

dimensional probabilistic forecasting

Improving and 

Understanding 

Climate Models

Things to be forecast now: Demand, Wind, Solar, Price

Things to be forecast in the future: Flexibility, EV charging, DSR, storage 

(SoC), more prices…



1. Uncertainty Forecasting

Types of Uncertainty Forecast

• In many applications there is utility in knowing “how wrong” 

a [deterministic] forecast could be

• Forecast users are more concerned with the impact on their 

operation rather than the skill of the forecast itself!

• Two paradigms:

• The “forecaster’s” perspective – error metrics, 

scoring rules, verification

• The “end user’s” perspective – value added, 

decision-support, usability, accountability

All forecasts are wrong, but some are 

useful.



1. Uncertainty Forecasting

Types of Uncertainty Forecast

Quantifying Uncertainty

Level of Detail Forecaster Use

Long run performance statistics Mean Absolute Error etc…
• Heuristics, e.g. “take action to 

prepare for error of up to 30%”

“Simple” Probabilistic Forecasts 

(intervals, density)

As above, plus reliability, 

sharpness, etc…

• Situational awareness

• Cost-loss decisions

• Heuristics e.g. “take action to 

prepare for 1-in-10 worst case”

“Full” Probabilistic Forecasts 

(multivariate, spatio-temporal 

trajectories)

As above, plus 

dependency verification, 

multivariate energy score 

etc…

As above, plus:

• Stochastic optimisation

• Multivariate cost-loss decisions

Extremes
Extreme Value Theory, 

Ensemble NWP
Low-probability high-cost risk events



1. Uncertainty Forecasting

Types of Uncertainty Forecast

Density Forecast

• Prediction at each time point is a probability density 

function

Interval Forecast

• Fixed probability of observation falling between 

some upper and lower bound



1. Uncertainty Forecasting

Types of Uncertainty Forecast

Scenario Forecast or Trajectories

• Set of plausible scenarios

• Samples drawn from multivariate predictive 

distribution



1. Uncertainty Forecasting

The Cost-loss Model

Decisions making under uncertainty:

• Should we incur cost 𝐶 to protect against a 

possible loss 𝐿, which has probability 𝑝 of being 

realised? 

Adverse Event 

Occurs

Adverse Event 

Does Not Occur

Expected Cost

Precautionary 

Action Taken
𝐶 𝐶 𝐶

Precautionary 

Action Not Take
𝐿 0 𝑝𝐿

Take action if

𝒑 >
𝑪

𝑳
(if you are risk-neutral)



1. Uncertainty Forecasting

The Cost-loss Model

Decisions making under uncertainty:

• Should we invest 𝐶 for a possible gain 𝐿, which 

has probability 𝑝 of being realised? 

Positive Event 

Occurs

Positive Event 

Does Not Occur

Expected Cost

Investment 

Action Taken
𝐶 − 𝐿 𝐶

𝑝 𝐶 − 𝐿
+ 1 − 𝑝 𝐶

Investment 

Action Not Take
0 0 0

Take action if

𝒑 >
𝑪

𝑳
(if you are risk-neutral)



2. Forecasting Model Chain

Renewable Energy Forecasting Model Chain

Numerical Weather Prediction

Observations Prediction
Energy 

Conversion

Forecast 

Use

Assimilation/ 

Initialisation

Forecast 

Evaluation

• Each step is a potential source of uncertainty 

• By using statistical learning here we try to capture the 

uncertainty in the previous steps to inform decision-

making

• Ensemble NWP tries to capture uncertainty at the 

NPW stage and can also be valuable for energy 

forecasting



2. Forecasting Model Chain

Renewable Energy Forecasting Model Chain

Numerical Weather Prediction

Observations Prediction
Energy 

Conversion

Forecast 

Use

Assimilation/ 

Initialisation

Forecast 

Evaluation

https://www.ecmwf.int/en/research/data-assimilation/observations



2. Forecasting Model Chain

Renewable Energy Forecasting Model Chain

Numerical Weather Prediction

Observations Prediction
Energy 

Conversion

Forecast 

Use

Assimilation/ 

Initialisation

Forecast 

Evaluation

1. State of atmosphere estimated on a 

grid by “pulling” forecasts towards 

observations in 4D.

2. Variables at each grid point propagated 

forwards in time using (linearized) laws 

of fluid dynamics and other physics

3. (Information exchange between 

atmospheric and ocean models)



2. Forecasting Model Chain

Renewable Energy Forecasting Model Chain

Numerical Weather Prediction

Observations Prediction
Energy 

Conversion

Forecast 

Use

Assimilation/ 

Initialisation

Forecast 

Evaluation

Energy Conversion:

Statistical Learning!

Forecast Use:

Another Course

Forecast Evaluation:

A little now…



2. Forecasting Model Chain

Aside… Very Short-term Forecasting

Observations Prediction
Forecast 

Use

Forecast 

EvaluationNote: for very short-term forecasting time-

series methods typically out-perform NWP

• NWP is already out-of-date when issued

• Often we’re interested in high temporal 

resolution (5,10,15, 30 minutes) in the very-

short-term

Many of the statistical learning methods 

presented today are also useful here.



Aside…

DOI: 10.1007/978-3-319-68418-5DOI: 10.1007/978-1-4614-9221-4

2. Forecasting Model Chain



2. Forecasting Model Chain

Forecast Verification

What makes a ‘good’ forecast?

• Small average error?

• Low uncertainty/high confidence?

• Reliable uncertainty estimates?

• Better decisions!

Forecast 

Use

Forecast 

Evaluation



2. Forecasting Model Chain

Forecast Verification

Density Forecast

• Sharp (i.e. confident) subject to calibration/reliability!

• As we have seen, decision-making is based on specific probability levels 

– these must be reliable

Time

P
o
w

e
r

Time

P
o
w

e
r

Sharpness:



2. Forecasting Model Chain

Forecast Verification

Density Forecast

• Sharp (i.e. confident) subject to calibration/reliability!

• As we have seen, decision-making is based on specific probability levels 

– these must be reliable

Calibration/Reliability: Statistical consistency between 

observations and distributional forecasts.

• E.g. events that are predicted to occur 20% of the time should be 

observed with a frequency of 20%.

• Challenge: For each predictive distribution we produce we only 

make one observation.

Further reading: Ideas of probabilistic, exceedance, marginal, strong and 

complete calibration: Gneiting et al, “Probabilistic forecasts, calibration and 

sharpness,” J. R. Statist. Soc. B (2007).



2. Forecasting Model Chain

Forecast Verification

Density Forecast

• Sharp (i.e. confident) subject to calibration/reliability!

• As we have seen, decision-making is based on specific probability levels 

– these must be reliable

Calibration/Reliability:



2. Forecasting Model Chain

Forecast Verification

Multi-variate Forecast

• Concept of “reliability” doesn’t generalise to multi-variate case

• Sharp subject to:

• Calibration of marginals (individual variables)

• Correct dependency structure (e.g. spatial, temporal, between 

variables)



2. Forecasting Model Chain

Forecast Verification

Beware: scoring rules average many 

individual forecasts…

Forecast Method 1

Very good most of the time, occasionally 

very bad.

Forecast Method 2

Pretty good all of the time.



2. Forecasting Model Chain

Forecast Verification

The Forecaster’s Dilemma

• One can successfully predict every extreme event by 

predicting that it will occur at all times!

• Weighting forecast evaluation by extreme events results in 

undesirable effects, including the rejection of perfect 

probabilistic forecasts!

• Important concept: “proper scoring rules” (loosely nothing is 

better than perfection)

For details see Lerch et al, “Forecaster’s Dilemma: Extreme Events 

and Forecast Evaluation” https://arxiv.org/pdf/1512.09244.pdf



2. Forecasting Model Chain

Forecast Verification for Model Selection

Predictive Power and Cross-validation

K-fold cross-validation makes use of large datasets to assess out-of-

sample predictive performance by dividing available data into multiple 

training and validation sets.

 Helps avoid overfitting when choosing values of hyper-parameters

 Give indication of final performance

 Requires sufficient data that each training set is representative

 Computationally demanding

Train Train Train Validation

Train Train TrainValidation

Train TrainTrain Validation

Train Train TrainValidation



3. Linear Regression and Extensions

Contents

What I will cover in this section:

• Parametric Uncertainty Forecasting

• Linear models

• Generalised Additive Models (for Location, Scale and Shape…)

• Regularisation

• Ridge

• LASSO

• Splines

• Non-parametric Uncertainty Forecasting

• Quantile Regression



3. Linear Regression and Extensions

Contents

Illustrative Examples Based on GEFcom2014 Wind Power Data

Caveats:

• Only wind speed included as input for simple visualisation

• Important things such as data cleaning, parameter tuning, cross-

validation have not been given much consideration

• R code available with slides



3. Linear Regression and Extensions

Basic Formulation of Supervised Learning

𝑦𝑡 = 𝑓 𝑥1,𝑡, 𝑥2,𝑡, … + 𝜖𝑡

Find 𝑓 ⋅ to minimise some function of 

𝜖𝑡 , t = 1,… , T

…or describe the statistics of 𝜖𝑡 to 

quantify uncertainty.



3. Linear Regression and Extensions

Loss Functions

Mean Squared Error:

𝐿 𝜖1, … , 𝜖𝑇 =
1

𝑇
෍

𝑖=1

𝑇

𝜖𝑖
2

Mean Absolute Error:

𝐿 𝜖1, … , 𝜖𝑇 =
1

𝑇
෍

𝑖=1

𝑇

|𝜖𝑖|

Quantile Loss (Pinball) for 𝜏th quantile:

𝐿𝜏 𝜖1, … , 𝜖𝑇 =
1

𝑇
෍

𝜖𝑖≥0

𝜏𝜖𝑖 +
1

𝑇
෍

𝜖𝑖<0

(𝜏 − 1)𝜖𝑖



3. Linear Regression and Extensions

Linear Models

𝑦𝑡 = 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 +⋯+ 𝜖𝑡

𝑦𝑡 = 𝒙𝑡
⊤𝜷 + 𝜖𝑡

𝑦𝑡 = 𝑓 𝑥1,𝑡, 𝑥2,𝑡, … + 𝜖𝑡

Suppose 𝑓 𝑥1,𝑡, 𝑥2,𝑡, … is a linear combination of 𝑥1,𝑡, 𝑥2,𝑡, …



3. Linear Regression and Extensions

Linear Models

Y = 𝑋⊤𝜷 + 𝝐

𝑦1
⋮
𝑦𝑇

=
𝒙1
⊤

⋮
𝒙𝑇
⊤
𝜷 +

𝜖1
⋮
𝜖𝑇

Parameters 𝜷 to be estimated, or learnt, to minimise chosen loss 

function over some set of examples.

෡𝜷 = argmin
𝜷

𝐿 𝑌 − 𝑋⊤𝜷



3. Linear Regression and Extensions

Linear Models

Deterministic Forecasting: Ordinary Least Squares

෡𝜷 = argmin
𝜷

𝑌 − 𝑋⊤𝜷 ⊤ 𝑌 − 𝑋⊤𝜷

𝑑

𝑑𝜷
𝑌 − 𝑋⊤𝜷 ⊤ 𝑌 − 𝑋⊤𝜷 = 0

෡𝜷 = 𝑋⊤𝑋 −1𝑋⊤𝑌



3. Linear Regression and Extensions

Linear Models

Deterministic Forecasting: Ordinary Least Squares



3. Linear Regression and Extensions

Linear Models

Deterministic Forecasting: Ordinary Least Squares



3. Linear Regression and Extensions

Linear Models

Uncertainty Forecasting: Maximum Likelihood Estimation

Y = 𝑋⊤𝜷 + 𝝐

If 𝜖𝑡 follow some distribution, find the 

parameters 𝜷 that maximises the 

likelihood of observing (Y, 𝑋)



3. Linear Regression and Extensions

Linear Models

Uncertainty Forecasting: Maximum Likelihood Estimation

𝜖𝑖 ∼ 𝑁 0, 𝜎 ∀𝑖

Y = 𝑋⊤𝜷 + 𝝐

P(Y, X; 𝜷) =ෑ

𝑖

1

2𝜋𝜎2
𝑒
−
𝜖𝑖
2

2𝜎2

LogP Y, X; 𝜷 ∝෍

𝑖

−
𝜖𝑖
2

2𝜎2

෡𝜷 = argmin
𝜷

𝑌 − 𝑋⊤𝜷 ⊤ 𝑌 − 𝑋⊤𝜷Look familiar?

Called “log-likelihood”

ℓ



3. Linear Regression and Extensions

Linear Models

Uncertainty Forecasting: Maximum Likelihood Estimation

𝜖𝑖 ∼ 𝑁 0, 𝜎 ∀𝑖

෡𝜷 = 𝑋⊤𝑋 −1𝑋⊤𝑌

Standard deviation  𝜎 is the sample s.d. of 

𝜖𝑖 using ෡𝜷.



3. Linear Regression and Extensions

Linear Models

Uncertainty Forecasting: Maximum Likelihood Estimation

𝜖𝑖 ∼ 𝑁 0, 𝜎 ∀𝑖

We can now write down a “predictive 

distribution” for 𝑦𝑡

𝑦𝑡 ∼ 𝑁(𝒙𝑡
⊤𝜷, 𝜎)

𝑦𝑡 = 𝒙𝑡
⊤𝜷 + 𝜖𝑡



3. Linear Regression and Extensions

Generalised Additive Models for Location, Scale and Shape

Example: MLE of Gaussian



3. Linear Regression and Extensions

Generalised Additive Models for Location, Scale and Shape

Example: MLE of Gaussian



3. Linear Regression and Extensions

Generalised Additive Models for Location, Scale and Shape

Example: MLE of Gaussian



3. Linear Regression and Extensions

Linear Models

Uncertainty Forecasting: Maximum Likelihood Estimation

What if 𝝐 isn’t Gaussian?

Option 1: Transform your data or increase complexity of your model

Option 2: MLE for another parametric distribution

Option 3: Non-parametric



3. Linear Regression and Extensions

Generalised Linear Models

𝑔(𝑦𝑡) = 𝒙𝑡
⊤𝜷 + 𝜖𝑡

Uncertainty Forecasting with Generalised Linear Models

(a fancy name for something quite simple)

• Most results for linear models still hold

• 𝑔(⋅) called the “link function”

• Common transformations:

• Log (for positive spiky data, e.g. volatile prices)

• Probit/Logistic functions (transform 0,1 to −∞,∞ )

• Sometime called “variance stabilisation”



3. Linear Regression and Extensions

Generalised Additive Models

𝑔 𝑦𝑡 = 𝒙𝑡
⊤𝜷 + 𝑓1 𝑥1,𝑡 + 𝑓2 𝑥2,𝑡 +⋯+ 𝜖𝑡

Generalised Additive Models

𝑓 𝑥 =෍

𝑖=1

𝑞

𝑏𝑖 𝑥 𝛽𝑖

We can use results for linear models if 𝑓 𝑥 takes the form of a linear 

model…



3. Linear Regression and Extensions

Generalised Additive Models

𝑔 𝑦𝑡 = 𝒙𝑡
⊤𝜷 + 𝑓1 𝑥1,𝑡 + 𝑓2 𝑥2,𝑡 +⋯+ 𝜖𝑡

Generalised Additive Models

Basis Functions

𝑓 𝑥 =෍

𝑖=1

𝑞

𝑏𝑖 𝑥 𝛽𝑖

𝑏𝑖 ⋅ can be chosen freely! If you know something about your data 

chose some relevant functions…



3. Linear Regression and Extensions

Generalised Additive Models

Generalised Additive Models

Some Useful Basis Functions (for information only)

𝑓 𝑥 =෍

𝑖=1

𝑞

𝑏𝑖 𝑥 𝛽𝑖

Polynomial Regression

𝑓 𝑥 =෍

𝑖=1

𝑞

𝑥𝑖𝛽𝑖

Local Regression (LOESS)

𝑓 𝑥 =෍

𝑗

෍

𝑖=1

𝑞

𝑤𝑗(𝑥)𝑥
𝑖𝛽𝑖

𝑤𝑗(𝑥): weight function, tri-

cube is popular, others 

possible.



3. Linear Regression and Extensions

Generalised Additive Models

Generalised Additive Models

Basis Functions

𝑓 𝑥 =෍

𝑖=1

𝑞

𝑏𝑖 𝑥 𝛽𝑖

Spline Basis

• Cubic Splines: sections of cubic polynomials joined at “knots”. First and 

second derivative continuous at knots.

• B-splines: each basis function only non-zero in locality of it’s knot.

• P-splines: penalised B-splines, very flexible.



3. Linear Regression and Extensions

Generalised Additive Models for Location, Scale and Shape

Example: Cubic Splines



3. Linear Regression and Extensions

Regularisation

Increasing complexity robustly…

Mitigation: Regularisation

෡𝜷 = argmin
𝜷

෍

𝑡

𝐿(𝑦𝑡 , 𝒙𝑡𝜷) + 𝐽(𝜷)

Possible Improvement Risk

Expand set of explanatory variables

(new data or “engineered” features)

Poor parameter estimates,

especially for correlated features.

Increase complexity of splines/basis 

functions

Over-fitting



3. Linear Regression and Extensions

Regularisation

Possible Improvement Risk

Expand set of explanatory variables

(new data or “engineered” features)

Poor parameter estimates,

especially for correlated features.

• Correlated features means correlated columns of 𝑋 and 

the covariance matrix 𝑅 = 𝑋⊤𝑋

• This leads of the determinant of 𝑋⊤𝑋 being very small 

and the OLS solution is “ill-conditioned”

෡𝜷 = 𝑋⊤𝑋 −1𝑋⊤𝑌

Gets very small…
Gets very big…



3. Linear Regression and Extensions

Regularisation

Penalised Least Squares: Ridge

Ridge Regression:

෡𝜷 = argmin
𝜷

𝑌 − 𝑋⊤𝜷 2
2 + 𝜆 𝜷 2

2

Closed form solution:

෡𝜷 = 𝑋⊤𝑋 + 𝜆𝐼 −1𝑋⊤𝑌

Hyper-parameter 𝜆 typically chosen via cross-validation



3. Linear Regression and Extensions

Regularisation

Penalised Least Squares: Ridge

Credit : An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

RMS Error

Ridge Penalty



3. Linear Regression and Extensions

Regularisation

Penalised Least Squares: LASSO

Least Absolute Shrinkage and Selection Operator:

෡𝜷 = argmin
𝜷

𝑌 − 𝑋⊤𝜷 2
2 + 𝜆 𝜷 1

No closed form solution, must be solved numerically. 

Thankfully, some neat tricks make this pretty efficient.

Hyper-parameter 𝜆 typically chosen via cross-validation.



3. Linear Regression and Extensions

Regularisation

Penalised Least Squares: LASSO

Least Absolute Shrinkage and Selection Operator:

Credit : An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

• Some parameters driven to 

exactly zero

• LASSO performs parameter 

selection and estimation 

simultaneously.



3. Linear Regression and Extensions

Regularisation

Possible Improvement Risk

Increase complexity of splines/basis 

functions

Over-fitting



3. Linear Regression and Extensions

Regularisation

Penalised Regression Splines

• Penalise the second derivative, or “wiggliness” of 

the spline:

෡𝜷 = argmin
𝜷

𝑌 − 𝑋⊤𝜷 2
2 +න 𝑓′′ 𝑥 2𝑑𝑥

• Because splines are of the form 𝑓 𝑥 = σ𝑖=1
𝑞

𝑏𝑖 𝑥 𝛽𝑖
this becomes:

෡𝜷 = argmin
𝜷

𝑌 − 𝑋⊤𝜷 2
2 + 𝜷⊤𝑆𝜷

• The matrix 𝑆 is known provided the basis functions 

are twice differentiable



3. Linear Regression and Extensions

Regularisation

Possible Improvement Risk

Increase complexity of splines/basis 

functions

Over-fitting



3. Linear Regression and Extensions

Generalised Additive Models for Location, Scale and Shape

Option 2

Other Parametric Distributions

• In the real world, high order moments (variance, skewness, kurtosis) are 

not fixed and should be treated as dependent variables.

• Closed-form solutions for MLEs of many multiple-parameter distributions 

do not exist



3. Linear Regression and Extensions

Generalised Additive Models for Location, Scale and Shape

Option 2

Other Parametric Distributions

• So far we’ve considered GAMs for the mean or location parameter of the 

Gaussian distribution:

𝑔1 𝝁 = 𝑿1𝜷1

• We can expand this to other parameters, scale and shape, too:

𝑔2 𝝈 = 𝑿2𝜷2

𝑔3 𝝂 = 𝑿3𝜷3

𝑔4 𝝉 = 𝑿4𝜷4



3. Linear Regression and Extensions

Generalised Additive Models for Location, Scale and Shape

Option 2

Other Parametric Distributions

• Estimation of 𝜷1, 𝜷2,𝜷3,𝜷4: numerical methods

Rigby-Stasinopoulos Cole-Green

• Calculate partial derivatives 

of likelihood function

• Sequentially estimate each 

𝜷𝑖 using recent estimate of 

others until convergence

• Calculate partial derivatives 

of likelihood function

• Calculate cross derivatives 

of likelihood function

• Update step in direction of 

steepest decent



3. Linear Regression and Extensions

Generalised Additive Models for Location, Scale and Shape

Option 2

Other Parametric Distributions

• Estimation of 𝜷1, 𝜷2,𝜷3,𝜷4: numerical methods

Rigby-Stasinopoulos Cole-Green

“Flexible Regression and Smoothing The GAMLSS packages in R,” Mikis Stasinopoulos, Bob Rigby, 

Vlasios Voudouris, Gillian Heller and Fernanda De Bastiani, www.gamlss.com



3. Linear Regression and Extensions

Generalised Additive Models for Location, Scale and Shape

Example: GAMLSS

𝑦𝑡 ∼ 𝑁(𝜇 = 𝒙1,𝑡
CS𝜷1, 𝜎 = 𝑒𝒙2,𝑡𝜷2)
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3. Linear Regression and Extensions

Non-parametric Distributions

Option 3

Non-Parametric Distributions

• Complete freedom of distribution shape – great! 

• Infinite degrees of freedom – not so great! 

• Solutions:

1. Quantile Regression (more to come)

2. Kernel Density Estimation

• Estimate PDF as a finite mixture of parametric functions, e.g. 

RBF, to approximate shape  

3. Analog Ensemble

• Empirical distribution of historic data. May be conditional by 

selecting kNN historic observations to form PDF



3. Linear Regression and Extensions

Quantile Regression

Quantile Loss (Pinball) for 𝜏th quantile:

𝐿𝜏 𝜖1, … , 𝜖𝑇 =
1

𝑇
෍

𝜖𝑖≥0

𝜏𝜖𝑖 +
1

𝑇
෍

𝜖𝑖<0

(𝜏 − 1)𝜖𝑖

E.g. 10%-quantile:

𝐿0.1 𝜖1, … , 𝜖𝑇 =
1

𝑇
෍

𝜖𝑖≥0

0.1 × 𝜖𝑖 +
1

𝑇
෍

𝜖𝑖<0

0.9 × 𝜖𝑖

To minimise 𝐿0.1 a greater number of positive 𝜖s relative to negative is 

encouraged.



3. Linear Regression and Extensions

Quantile Regression

Solution – for linear quantile regression, i.e.

𝑞𝜏,𝑡 = 𝒙𝑡
⊤𝜷𝜏

is 

෡𝜷 = argmin
𝜷

1

𝑇
෍

𝜖𝑖≥0

𝜏(𝑞𝜏,𝑡 − 𝒙𝑡
⊤𝜷𝜏) +

1

𝑇
෍

𝜖𝑖<0

(𝜏 − 1)(𝑞𝜏,𝑡 − 𝒙𝑡
⊤𝜷𝜏)

• Minimising quantile loss can be formulated as a linear 

programming problem and solved using conventional solvers

• Or iteratively using ensemble learning techniques



4. Decision Trees and Ensemble Learning

Contents

What I will cover in this section:

• Gradient Boosting

• Decision Trees

• Gradient Boosting Trees

• Overview of Extensions

• Bagging and Random Forest

• Analog Ensemble



4. Decision Trees and Ensemble Learning

Gradient Boosting

The  Concept: Boosting

We have some simple function, 𝐹1(𝑥), for predicting 𝑦. Can we boot 

it’s performance by fitting another simple function, ℎ(𝑥), to it’s 

residuals?

𝑦𝑡 = 𝐹2 = 𝐹1 𝑥𝑡 + 𝛾ℎ(𝑥𝑡)

argmin
ℎ,𝛾

෍

𝑡

𝐿 𝑦𝑡 , 𝐹1 𝑥𝑡 + 𝛾ℎ(𝑥𝑡)

Often finding ℎ(𝑥) itself is not possible/practical...



4. Decision Trees and Ensemble Learning

Gradient Boosting

The  Concept: Gradient Boosting

Take a Newton step towards lower values of loss function, i.e. 

gradient descent:

𝐹𝑛 𝑥𝑡 = 𝐹𝑛−1 𝑥𝑡 − 𝛾𝑛෍

𝑡

𝜕𝐿 𝑦𝑡 , 𝐹𝑛−1 𝑥𝑡
𝜕𝐹𝑛−1

Now rather than some unknown function we have new data called 

pseudo-residuals:

𝑟𝑛−1,𝑡 = อ
𝜕𝐿 𝑦, 𝐹 𝑥

𝜕𝐹(𝑥)
𝐹(𝑥)=𝐹𝑛−1(𝑥𝑡)

Fit a new weak learner ℎ𝑛(𝑥) to the pseudo-residuals 𝑟𝑛−1,𝑡, 𝑥𝑡



4. Decision Trees and Ensemble Learning

Gradient Boosting

Gradient Boosting Algorithm

1. Calculate pseudo-residuals 𝑟𝑛−1,𝑡 = ฬ
𝜕𝐿 𝑦,𝐹 𝑥

𝜕𝐹(𝑥) 𝐹(𝑥)=𝐹𝑛−1(𝑥𝑡)

2. Estimate a weak learner ℎ𝑛(𝑥) for the pseudo-residuals 𝑟𝑛−1,𝑡, 𝑥𝑡

3. Calculate step size:

𝛾𝑛 = argmin
𝛾

෍

𝑡

𝐿 𝑦𝑡, 𝐹𝑛−1 𝑥𝑡 + 𝛾𝑟𝑛−1,𝑡

4. Update model:

𝐹𝑛 𝑥 = 𝐹𝑛−1 𝑥 + 𝛾𝑛ℎ𝑛(𝑥)



4. Decision Trees and Ensemble Learning

Decision Trees

Trees: An Alternative to Linear Models

• Model dataset by partitioning using simple “rules”

Spd100 < 7.4

Spd100 < 5.7

U100 < 6

Spd100 < 9.4

U100 < 7.20.11

0.26 0.44 0.44 0.66

0.73

yes no
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Decision Trees

Trees: An Alternative to Linear Models

• Model dataset by partitioning using simple “rules”



4. Decision Trees and Ensemble Learning

Decision Trees

Trees: An Alternative to Linear Models

• Properties in higher dimensions: “steps” rather than inclined planes 

of linear models



4. Decision Trees and Ensemble Learning

Ensemble Methods

Trees: An Alternative to Linear Models

• Model dataset by partitioning using simple “rules”

• Basic process is computationally light making extensions 

attractive:

• Boosting – final model = weighted sum of many “weak 

learners”

• Bagging (“Bootstrap aggregating) – final model = weighted 

sum of many learners fit to subsamples of training data



4. Decision Trees and Ensemble Learning

Gradient Boosting

Boosted Simple Trees vs Single Complex Tree

Comparison of learning between single, complex decision tree and 

gradient boosted tree of stumps (simple decision trees). Both 

methods learn by sequentially increasing complexity.



4. Decision Trees and Ensemble Learning

Gradient Boosting

Gradient Boosting Algorithm: Extensions

• Stochastic Gradient Descent

• Bagging (next section) to fit each new weak learner to random 

sections of training data (sampled with replacement)

• Standard in most implementations

• Reduce 𝛾𝑛 by some factor to control convergence

• Extensions/Implementations for Trees

• XGBoost: Boosting considering a second-order Taylor 

expansion of the loss function. NB: loss function must be twice 

differentiable – can’t be used for absolute error or quantile 

regression

• Light GBM & CatBoost: Alternative tree growth algorithm for 

fast implementation on large datasets



4. Decision Trees and Ensemble Learning

Gradient Boosting

GBT for Quantile Regression

• Separate GBT required for each quantile:

• Different hyper-parameters may be optimal for different 

quantiles

• Quantile crossing may emerge, re-ordering required

• Typical hyper-parameters:

1. Number of trees/boosting iterations

2. Learning Rate

3. Interaction depth (number of splits in each tree)

4. Bagging fraction

5. Minimum number of data points per leaf

6. …

7. …

Top 3 estimated by 

grid search or similar

Others by judgement 

and trial and error.
Not so important for final 

results
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Gradient Boosting

GBT for Quantile Regression



4. Decision Trees and Ensemble Learning

Gradient Boosting

GBT and Feature Selection

• Gradient boosting trees perform a kind of regularisation…

• Each simple tree only splits for the features which add the 

most value to the model

• Features that contribute little are unlikely to form a split and 

therefore are have less impact on the model

• Similar behaviour to LASSO…



4. Decision Trees and Ensemble Learning

Gradient Boosting

GBT and Feature Selection

Credit: Trevor Hastie, Robert Tibshirani,Jerome Friedman,”The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction”, Second Edition

Forward Stagewise is a boosted linear 

regression algorithm:

• At each iteration, a single regression 

parameter is increased my a fixed 

amount

• The chosen parameter-feature pair is 

that which would have the lowest MSE 

if used to predict residuals in OLS



4. Decision Trees and Ensemble Learning

Gradient Boosting

GBT and Feature Selection

Credit: Trevor Hastie, Robert Tibshirani,Jerome Friedman,”The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction”, Second Edition

Compare regularisation paths to those of 

LASSO:

• Right: Parameter values vs sum of 

absolute parameter values

• Parameters estimated for a range of 𝜆
(LASSO penalty weight)



4. Decision Trees and Ensemble Learning

Random Forest

Random Forest: Concept

Estimate multiple decision trees and take the consensus as the final 

output.

Key ideas:

1. Fit each predictor to a random subset of training data

• Not unique to random forest, also called bootstrap 

aggregation

2. When fitting trees, only consider a random subset of features t 

each candidate split, “feature bagging”.



4. Decision Trees and Ensemble Learning

Random Forest

Random Forest: Usage for Quantile Regression

• Separate forest required for each quantile:

• Different hyper-parameters may be optimal for different 

quantiles (less so than for GBT)

• Quantile crossing may emerge, re-ordering required

• Typical hyper-parameters:

1. Number of trees in forest

2. Sample bag fraction

3. Feature bag fraction

4. Minimum number of data points per leaf

5. …

6. …

Top 3 estimated by 

grid search or similar

Others by judgement 

and trial and error.
Not so important for final 

results



4. Decision Trees and Ensemble Learning

Random Forest

Random Forest: Notes

• Random Forest mitigates over-fitting by:

• reducing model variance (by averaging result of many trees)

• …without compromising bias.

• Preference for large forest of complex trees

• Link to k-NN or “analog ensemble” (next slide)

• Few variants compared to boosted trees as tree growth algorithm 

is the defining feature of RF

• RF can be post-processed with LASSO to improve performance in 

some cases



4. Decision Trees and Ensemble Learning (not really!)

Analog Ensemble

Analog Ensemble

1. Find the k feature vectors in the 

training data that are most similar to 

new feature vector.

2. Use weighted sum of associated 

labels/outputs as prediction. Use 

empirical distribution of labels/outputs 

as uncertainty forecast. 

• Simple and powerful method!

• No model to train, though choice of k and distance measure is 

important

• Limited by number of features – performance deteriorates with low 

quality or large number of features

• Relatively high computation cost for operational forecasting



5. Practical Example

Which approach should I choose?

Things I haven’t talked about today but you might be interested in:

• Feature Engineering

• Next Lecture!

• Neural Networks

• Tomorrow’s lectures!

• Conditional Kernel Density Estimation

• Estimate conditional density as a linear combination of kernel 

functions

• Markov chains

• Support Vector Machines

• Mixture models, hidden Markov models and the EM algorithm

• For unobserved/unlabelled regimes – really powerful stuff!



5. Practical Example

Which approach should I choose?

Some questions to ask yourself:

• Which approach do I understand best? (Do I have time to learn a new 

method?)

• Is performance going to be dominated by feature engineering 

anyway? (Next lecture!)

• How important are:

• Interpretability?

• Robustness to missing/bad data?

• Computational demand/time?

• Out-of-the box solutions?

• How big is my data?

Most energy forecasting

Speech, image, video 

processing…



5. Practical Example

Tuning a GBT for Wind Power Forecasting

Practical Guide to Tuning a GBT

1. Data Preparation

2. Training and Validation Set-up

3. Initial Tuning

4. Fine Tuning

5. Final Evaluation



5. Practical Example

Tuning a GBT for Wind Power Forecasting

1. Data Preparation

Remove/adjust data which are not 

representative of the process you are 

modelling:

• Curtailment

• Reduced capacity

• Meter errors

Other considerations:

• Forecast horizon – performance on 

NWP changes with horizon…
1. Learn different model for different 

horizons

2. Create explanatory features

• Slow changes in training data:
1. Performance degradation/restoration

2. Change in local geography, e.g. 

forestry

 Create explanatory features



5. Practical Example

Tuning a GBT for Wind Power Forecasting

2. Training and Validation Set-up

Evaluation metrics: Sharpness subject to reliability?

• Quantile loss of individual quantiles and overall

Cross-validation

• Divide training set into k-fold

• Choose k carefully: large is good but at computational expense!

• Some applications will favour random samples for CV – beware 

training on data which are highly (unrealistically) correlated to 

test data!

Train Train Train Validation

Train Train TrainValidation

Train TrainTrain Validation

Train Train TrainValidation



5. Practical Example

Tuning a GBT for Wind Power Forecasting

3. Initial Tuning

Get a rough idea of what is going to 

work:

• Sensible starting values and ranges 

for hyper-parameters

• Feature Engineering! (Next Lecture)

• Sensitivity of different quantiles to 

different parameters
• Should I tune them separately?

• Which parameters should I fine tune?

• Plot results!
• Check behaviour is sensible!

• Can you identify any failings? E.g. 

poor performance at low/high wind 

speed etc…



5. Practical Example

Tuning a GBT for Wind Power Forecasting

4. Fine Tuning

• Set-up an automated grid search (or 

better) to find best combination of 

hyper-parameters

• Alternatives to grid search 

can be much faster and more 

effective

• Parallelisable

• Be smart but patient

• Re-order crossed quantiles if 

required

James Bergstra, Yoshua Bengio, Random Search for Hyper-Parameter 

Optimization,Journal of Machine Learning Research, 13, 2012



5. Practical Example

Tuning a GBT for Wind Power Forecasting

5. Evaluation

• Produce final result for previously 

unseen Test Data

• Analyse performance, overall and 

under different conditions:

• Reliability

• Quantile Loss

• Sharpness

• Decision-based metrics?

• Compare to other methods:

• Simple benchmarks

• Competitive benchmarks
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