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Abstract—This paper describes the regime-switching auto-
regressive models used to win the EEM 2017 Wind Power
Forecasting Competition. The competition required participants
to produce daily forecast wind power production for a portfolio
of wind farms from 2 to 38 hours-ahead based on historic
generation and numerical weather prediction analysis data only.
The regimes used in the methodology presented are defined on the
previous day’s weather conditions using the k-medians clustering
algorithm. Cross-validation is used to identify models with the
best predictive power from a pool of candidate models. The final
methodology produced a final weighted mean absolute error
4.5% lower than the second place team during the two-week
competition period.

Index Terms—Wind Power, Forecasting, Time Series, Cluster-
ing, Autoregression, Regime Switching

I. INTRODUCTION

Wind power forecasting is an essential process in mod-
ern power system operation in networks with significant
penetration of wind generation, and is central to successful
electricity market participation in these regions. Short-term
forecasts from hours- to days-ahead are used in generation
and maintenance scheduling, and for trading in electricity
markets forecasts; and very-short-term forecasts from minutes-
to hours-ahead are used for participation in intra-day markets
and by power system operators to balance supply and demand
in real time [1], [2]. Due to the stochastic nature of the wind
resource forecasts will always be required to inform decisions
where future wind generation is a factor. Furthermore, the
importance and value of high-quality forecasting will increase
with the penetration of wind power. The growing demand
for energy forecasts, and for improvement in forecast quality,
has motivated a great deal of research and development, and
also competitions to compare methodologies in a controlled
environment, see [3], [4], for example.

This paper details team p9’s winning approach to the
problem set in the EEM 2017 Wind Power Forecasting Com-
petition. The competition required participants to forecast the
aggregated wind power generation from a portfolio of wind
farms from 2 to 38 hours-ahead at 15 minute resolution on
a daily basis for two weeks. Participants were provided with
one year of historic power production and numerical weather
prediction data (analysis only, no forecasts) to train their
forecasting models, plus daily updates during the competition
period. Team p9’s solution was based on regime-switching
auto-regressive models with regimes defined on the most
recent day’s weather. This approach won the competition with

a 4.5% lower error score (the competition was scored on re-
weighted mean absolute error) than the second place team.

Deterministic wind power forecasts, the focus for this com-
petition, comprised of single-valued best estimates of future
energy for a particular time-horizon are approaching techno-
logical maturity. A comprehensive review of the concerted
research effort of the wider academic community can be found
in [5], [6]. However, due to the stochastic nature of the wind
there is a broad consensus in the academic community that
forecasts should be probabilistic in order to quantify forecast
uncertainty [7], [8]. Despite this, many forecast users still only
utilise deterministic forecasts due to their interpretability and
difficulties associated with incorporating complex probabilistic
information into decision-making processes. Therefore, im-
proving deterministic power forecasts is an important pursuit,
and developing new methodologies is the focus of current
research [9], [10]. Furthermore, improvements in deterministic
forecasting will translate to improvements in probabilistic
forecasting in many cases.

The methodology used in this paper has particular relevance
to very-short-term wind power forecasting where it is typically
assumed that statistical models based on time series analysis
are superior to the those which rely on physical model outputs,
i.e. Numerical Weather Prediction [6], [11]. The superiority
of purely statistical models within this time horizon is due
to a number of factors including: the most recent input
measurements to a NWP may be several hours old by the
time the forecast is issued, and errors introduced by the spatial
interpolation process required to make predictions at a specific
point of interest from gridded NWP output. The competition
set-up did not include numerical weather prediction forecasts
so only time series methods could be considered for all
forecast horizons; however, we show that there is value in
conditioning time series model on features derived NWP data.

A wide variety of well established and time series methods
have been adapted for power forecasting including autore-
gressive [12] and autoregressive moving average [13] models,
in addition to contemporary methods such as neural net-
works [14] and Markov chains [15]. Hybrid methods that
combine several time series models have also been studied and
shown to outperform individual methods in some cases [16].
Spatial models that consider multiple locations simultaneously
have been developed and shown to improve forecast skill at all
measurement locations [17], [18], and it has been shown that
the spatial dependency structure itself is dynamic and exhibits



seasonality and dependence wind direction, for example [19],
[20].

Time series models may be conditioned on observed or
unobserved regimes. Wind speed forecasting techniques based
on switching between different models depending on wind
direction is proposed in [19] with regimes selected via a
cross-validation procedure. Hidden-Markov regime-switching
methods have been developed to forecast offshore wind power
with the number of regimes chosen to be three to reflect the
three distinct regions of the wind farm power curve [21],
[22]. More recently, cyclone detection has been used to
predict periods of potentially large forecast error in day-ahead
wind power forecasting [23] and atmospheric classification
has been used to improved very-short-term spatio-temporal
wind forecasting [24]. The large-scale meteorological situation
has a clear bearing on forecast performance but it is often
overlooked by studies, which restrict themselves to wind and
power time series only. In this work, the mean wind vector
for the 24 hours preceding the forecast issue time are used
to define regimes on which simple time series models are
conditioned.

While many approaches to wind forecasting have been pro-
posed, it is often difficult to compare their performance since
results will differ across datasets and implementing multiple
sophisticated methods for comparison on the same dataset
is challenging. For this reason, forecasting competitions are
very valuable pursuit and provide valuable learning for both
forecast producers and users.

This paper is organised as follows. Section II details the
methodology used in the competition including the data-
exploration used to inform model selection and Section III
details the cross-validation and competition results. Section IV
indications some proposed model improvements and finally,
Section V presents the conclusions.

II. METHODOLOGY

The following section details the approach taken by team p9
from exploration of the competition training dataset to model
fitting and evaluation.

A. Competition Framework
The competition was based on forecasting the 15 minute

resolution aggregated wind power generation from a portfolio
of wind farms from 2 to 38 hours-ahead on a daily basis. For
each day’s forecast the previous 24 hours of generation data
and NWP analysis at 3 hour resolution data for 10 geographic
locations is provided. A training dataset comprising 1 year
of the same data is also provided for model fitting. The
meteorological parameters provided are zonal and meridional
wind speed at 2m, 80m and 100m above ground, temperature
at 2m, and global surface radiation. Only wind speeds at 100m
at one of the 10 locations and the most recent 1.5 hours of
power data were inputs to p9’s final model.

B. Data Exploration
The first stage in the process involves visually exploring the

given data to identify the basic characteristics of the dataset.
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Fig. 1. Contour plot of the empirical power curve for the wind park portfolio.
Power contours (labelled, MW) are plotted for zonal and meridional wind
speed 100m above ground from ‘location 4’ in the competition training data.
The dataset only spans the illustrated domain. There is a strong directional
dependence on power performance and maximum wind speed.

Inspection of the aggregate power versus wind speed and
direction from the 10 NWP locations revealed that few of
the NWP grid points provided were related to the location of
the wind portfolio of interest. The portfolio power curve (with
direction) at location 4 is illustrated in Figure 1. The familiar
wind power curve is clearly visible and shows a significant
directional dependence. It was also observed that the capacity
of the portfolio appeared to increase over the course of the
1 year of training data; however, with the limited information
available this was difficult to quantify and was not incorporated
into our final model.

C. Benchmark Models

Initially, we implement a selection of standard benchmark
models against which we can evaluate more complex ap-
proaches. These were: the ‘mean forecast’ where the forecast
for every horizon is the mean of all historic data; persistence,
where the forecasts for every horizon is equal to the most
recent measurement; and an autoregressive (AR) model of
order p, where the forecast is a weighted sum of p previous
measurements (or forecasts in when making multiple set-ahead
predictions). We also considered a generalised additive model
based on a single lagged measurement and diurnal and annual
seasonality; an AR(p) model with parameter estimation via
the least absolute shrinkage and selection operator (LASSO);
and a tree-based gradient boosting machine (GBM). Following
evaluation of these models, further modifications are explored.
All models are evaluated via k-fold cross-validation which
allows for efficient out-of-sample testing over the relatively
small training dataset to gives a representative measure pre-
dictive performance.

1) Autoregressive Model: Modelling the wind power time-
series as an AR(p) process assumes that the wind power at
time t is a weighted sum of p past measurements plus some



error εt,

yt = φ0 +

p∑
i=1

φiyt−i + εt , (1)

where φ0 is the model intercept and φi, i > 0 are the
autoregressive coefficients associated with the ith lag. The
model parameters are estimated by ordinary least squares
(OLS), which produced the optimal linear unbiased predictor
in the case where εt has constant variance and is serially
uncorrelated. Although this condition is likely violated, the
simplicity and robust performance of this model necessitate its
inclusion. The order of the model p is chosen by examining
the autocorrelation and partial correlation function of the wind
power time series [25].

As the winds are effected by the daily heating and cooling
of the Earth it is desirable to introduce the time-of-day as
an exogenous dummy variable to capture diurnal profiles. An
alternative approach would be to model the diurnal trend via
some periodic function such as a Fourier series and/or de-trend
the time series. The new model is denoted ARX(p) and written

yt =

p∑
i=1

φiyt−i +

q−1∑
j=0

ηjDj,t + εt , (2)

where

Dj,t =

{
1 , b t%q

r c = j

0 , otherwise
, (3)

t % q denotes the remainder of t divided by q, and bxc
denotes the floor operator which returns the value of x rounded
down to the nearest integer. In this work data are 15 minute
resolution therefore q = 96. To obtain 96 dummy variables,
one for each 15 minute period of the day r = 1, and to obtain
hour-of-the-day dummy variables r = 96

24 = 4. The final value
of r is chosen based on cross-validation. The parameters φi
and ηj are estimated by OLS as for the AR(p) model. Note the
intercept φ0 is superseded by ηjDj,t which may be interpreted
as a time-dependent intercept.

2) Generalized Additive Model: Generalised additive mod-
els may be used to model smooth non-linear responses ex-
planatory variables, in contrast to the linear responses of
the ARX models described above. This can be achieved by
recasting the linear model as an additive model of smooth
functions

yt = β1f1(yt−1) + β2f2(Dt) + β3f3(At) + εt , (4)

where Dt = t%q, At = t%(q×365), and fi(·), i = 1, 2, 3 are
smooth functions to be estimated. Here, we choose f1(·) to be
a cubic spline, and f2(·) and f3(·) to be cyclic cubic splines
to capture smooth non-linear dependence on the first lagged
measurement, time-of-day and day-of-year, respectively. The
parameters βi, i = 1, 2, 3 and those of the cubic splines are es-
timated by penalized least squares to control the ‘wigglyness’
of the cubic splines as described in [26].

3) LASSO: The least absolute shrinkage and selection
operator [27] simultaneously performs linear regression and
feature selection estimation by shrinking the absolute size
of coefficients β by adding the `1 norm of β to the model
cost function. For a set of T samples, {Y,X}, where Y
and X are matrices of vertically stacked instances of yt and
xt = [yt−1, ...yt−p], respectively, the LASSO cost function is
given by

||Y −Xβ||22 + λ||β||1 . (5)

The user-defined shrinkage parameter λ controls sparsity and
is typically selected via a cross-validation procedure. Here, p is
set by the largest lag determined to have statistical significance
in the partial autocorrelation function of yt with a significance
level of 1%. The values of β and λ are estimated using the R
package glmnet which minimises (5) by cyclical coordinate
descent [28].

4) Gradient Boosting Machines: Gradient boosting con-
structs a powerful predictive model from an ensemble of weak
learners where, in this case, each learner is a regression tree.
The ensemble of regression trees is constructed sequentially
by estimating a new tree according to some user-specified
differentiable loss function. Importantly, the optimisation is
solved by steepest descent [29]. The user must specify the
number of trees to fit, n, and the number of regions each tree
divides the input space into. An additional shrinkage parameter
may be included to control the learning rate of the fitting
procedure and reduce the impact of individual trees in the
ensemble. In this implementation, lagged measurements and
time of day and year variables are used as inputs. For more
information on this algorithm please refer to [29].

D. Cluster Based Regime-Switching
Motivated by knowledge that synoptic-scale meteorological

conditions persists for several days (longer than the compe-
tition’s 38-hour forecast horizon) and our observation that
the production characteristics of the wind park portfolio vary
significantly in different regions it’s directional power curve,
we develop a regime-switching approach in an attempt to
model, and forecast, these distinct behaviours separately.

Regime-switching models in short-term wind forecasting
have been employed to capture structural differences in wind
power time series due to localised weather phenomena and
characteristics of wind turbine power curve [19], [22], [24].
These models either utilise exogenous variable, such as wind
direction [19] or atmospheric mode [24], or model some
unobserved hidden-Markov process [12].

Here, we define a number of discrete regimes based on
the clustering weather data available in the EEM competition
paradigm. We define the mean wind vector θt = (ũt, ṽt) where
ũt and ṽt are the mean zonal and meridional wind speeds
over the 24 hours immediately preceding time t. The k-median
algorithm [30] is then used to define k regimes. This algorithm
generates disjoint regions Rk that collectively cover the input
space spanned by θt.

A level plot, showing the history of the weather regime st
during the training dataset is plotted in Figure 2 where k = 5
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Fig. 2. Level plot of weather regime st for k = 5 clusters, overlaid with
regime number. Month 13 consists of the competition period data.

clusters. We observe that in general the regime persists for
several days and therefore that it is reasonable to forecast up
to 38-hours ahead assuming no change in regime. A possible
extension would be to forecast the future regime, but that is
beyond the scope of this work.

Separate AR(p) and ARX models are fit for each regime
and forecasts are produced using the model corresponding to
the regime at the forecast issue time. The number of clusters
is selected via cross-validation.

The regime-switching ARX model is written

yt =

p∑
i=1

φ
( st)
i yt−i +

q−1∑
j=0

η
(st)
j Dj,t + εt (6)

where

st =


1 for θt ∈ R1

2 for θt ∈ R2

...
k for θt ∈ Rk

. (7)

Setting all ηj = 0 reduces (6) to the regime-switching AR
model. The model above may be interpreted as a conditional
AR/ARX model where the regression parameters and condi-
tioned on the discrete switching variable st.

E. Forecast Blending

While it is expected that the performance of all models
will deteriorate with forecast horizon, the best performing
approach for a given horizon may not be the best for all others.
Therefore, the final forecast we issue is taken from the model
that has performed best in cross-validation for each specific
horizon. The transition between models is blended using a the
logistic function over one hour of the horizon purely for visual
satisfaction with negligible impact on overall performance.

u~ [m/s]

v~
 [
m

/s
]

−15 −10 −5 0 5 10 15 20

−
1
5

−
1
0

−
5

0
5

1
0

1
5

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

Fig. 3. Visualisation of k-median clusters for k = 5. The clusters pattern
reflects the distinct regions of the directional power curve illustrated in
Figure 1.

III. RESULTS

For simplicity, 11-fold cross-validation is used with each
month from February to December held out in turn. January
is excluded for simplicity as lagged values are unavailable for
the first day and also to reduce the influence of the apparently
depreciated capacity observed for the first months of the year.

The competition ranking is based on mean absolute error
(MAE), so that is the measure by which we evaluate candidate
forecast models. The MAE is given by

MAE =
1

N

N∑
i=1

|yi − ŷi| (8)

where ·̂ denotes a forecast and N is the total number of
forecasts being evaluated. The competition ranking is based
on the average of the MAE for the issue day (from 10:00
to 23:45, or 2 to 15.75 hours-ahead) and the MAE for the
day-ahead (00:00 to 23:45, or 16 to 37.75 hours ahead).
This has the effect of placing a greater weight on the earlier
horizons, though our blending approach optimises for all
horizons independently so no special action is required to
optimise performance specifically for the competition.

The cross-validation results for the benchmark models for
forecast horizons from 15 minutes to 38 hours ahead are
plotted in Figure 4. Little separates the different forecasts for
the shortest horizons, but the GAM and AR models are clearly
superior to the others for horizons greater than 8 hours.

The regime-switching AR/ARX approaches were imple-
mented for 2 to 6 cluster numbers and 5 was found to be
optimal with hour-of-day dummy variables r = 4 for the
ARX model. Performance of these models is illustrated in
Figure 5. A regime-switching GAM was also implemented but
performed worse than the original GAM, perhaps due to the
higher burden of training data required for reliable parameter
estimation.

Importantly, this result reveals that at horizons up to 12
hours ahead the regime-switching AR model out-performs the
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Fig. 4. Results of 11-fold cross-validation for benchmark models.
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Fig. 5. Cross validation results for AR and cluster-based regime switching
AR and ARX models used in competition entries.

regime ARX, but at horizons greater than 12 hours the regime-
switching ARX is marginally better. Therefore, forecasts from
these two models are blended around the 12 hour-ahead
horizon to produce our final forecasts for submission during
the competition period.

The poor performance of the regime-switching ARX model
at the very short-term time-scale could be due to the unsophis-
ticated nature of the engineered diurnal features. At instances
where the wind speed is low and the last measured power
value is near the minimum, the regime-switching ARX can
give spurious results in the very short term due to the dummy
variable multipliers. However, as the AR forecast develops
through the horizon it will tend to the mean and the indicator
multipliers will give a more meaningful forecast.

A. Competition Forecasts

The competition period entailed submitting 14 forecasts on
a daily rolling basis for the quarter hourly generation from
2 to 38 hours ahead. Team p9’s entries and the code used to
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Fig. 6. Daily performance of p9 and other teams during the competition.

TABLE I
FINAL RESULTS TABLE - TOP 10

Ranking Team Weighted MAE (MW)
1 p9 19.5906
2 4C 20.5070
3 p5 20.5590
4 Zephyr 21.6042
5 dmlab 22.1197
6 Keanu 22.5210
7 return42 22.6332
8 p25 22.8069
9 DSAP XXQ 23.3469
10 DSAP group1 23.4810

produce them may be downloaded here [31]. Forecast blending
was only introduced from day 5 onwards.

The results for each day of the competition period are shown
in Figure 6 which illustrates that (with the exception of day
5 and 7) the p9’s final forecast model closely tracks the best
performing team on each day.

Performance of the top teams 10 as published by the
competition organisers is reproduced in Table I. Team p9’s
final error score is 4.5% lower compared to the second place
team.

IV. DISCUSSION

Some refinements to the models presented here may yield
further improvement in forecast performance. As mentioned in
Section II-B, the capacity of the wind farm portfolio of interest
appeared to increase over the training period. Parametrising
this capacity may have improved final forecast performance,
but we were unable to reliably estimate the portfolio’s capacity
with the data available. In addition, given more training
data it may have been possible identify a greater number or
more precise weather regimes based on a greater number of
weather variables, which may also have improved forecast
performance.

The EEM Wind Power Forecasting Competition has pro-
vided a platform for researchers and forecast producers to
compare different methodologies in a controlled environment;



however, since NWP forecasts were not available for par-
ticipants in the competition the usefulness of the winning
methodologies is limited. Day-ahead forecasts driven by NWP
typically exhibit 40%-60% improvement compared to persis-
tence [6], while our winning entry achieved less than 20%
without NWP.

V. CONCLUSIONS

This paper details team p9’s approach to the problem set
in the EEM 2017 Wind Power Forecasting Competition. The
solution was based on a blend of regime-switching auto-
regressive models with regimes defined on the previous day’s
wind conditions identified using k-medians clustering. This
approach won the competition with a weighted mean absolute
error 4.5% lower than the second-place finishers.

Rigorous evaluation of multiple candidate models, and the
blending of the best performing models for specific forecast
horizons was key to the success of team p9, as was a com-
bination of wind energy and meteorology domain knowledge
which informed modelling decisions.
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